Final Report

Pouwy
O
QL RADC-TR-66-7, Volume Il
Yy
(A

~ ADVANCED COMPUTER ORGANIZATION STUDY
ﬂ Volume l - Appendixes

g) Donald L. Rohrbacher

TECHNICAL REPORT NO. RADC-TR-66-7
April 1966

Distribution of this document is unlimited

CLEARINGHOUSE
FOR FEDTIAY . WTTFIC AND
TECHNT - © Y ATION

" Hardcopy R ahel‘_—z
Ry /ﬂ s 2. a 0|
R Py
Corele [

Information Processing Branch
Roma Air Development Center
Research and Technology Division
Air Force Systems Command
Griffiss Air Force Base, New York

%hen US Government drawings, specifications, or other data are used for any purposc other
than a definitcly related government procurement operation, the government thereby incurs
no responsibility nor any obligation whatsoever; and the fact that the government may have
formulaced. furnished, or in any way supplied the said drawings. specifications. or other
data 1s not te be regarded, by implication or otherwise, as in any manner licensing the
holder or any other person or corporation, or conveying any rights or pe:mission to manu-
facturer, use, or sell any patented invention that may in any way be reluted thereto.

Do no¢ return this copy. Retain or destroy.

f‘"‘a.ﬂ’w" B

ADVANCED COMPUTER ORGANIZATION STUDY

Volume li - Appendixes

Donald L. Rohrbacher

Distribution of this document is unlimited

I A S ——— I, W Y T R <

N

K ..y’

%
R

FOREWORD

This technical docurnentary report records the efforts and
achievements on the advanced computer organization study
conducted by Goodyear Aerospace Corporation, Akron, Ohio.
The secondary report number assigned to this décument by
the company is GER-12314. This report is published in two
volumes: Volume One, Advanced Computer Organization,
Basic Report, and Volume Two, Advanced Computer Organi-

zation Study, Appendixes.

The study was conducted for the Rome Air Development Cen-
ter (RADC), Air Force Systeinus Command, under Contract
AF30(602)-3550, Project No. 4594, Task No. 459406. The
RADC project monitor was Mr. Fred Dion. The report cov-
ers the 14-month period ending 30 November 1965.

Appreciation is extended to Dr. John Holland, University of
Michigan, whose consulting services were extremely valuable
in both the development and ccnception of many of the ideas
presented. The major contributors to this study were D. L.
Rchrbacher (project engincer), Dr., K. E. Batcher, P. A.
Gilmore, .nd G. W. Lahue. Substantial contributions also
were made by G. P. Elliott, Dr. C. C. Foster, and D. C.
Gilliland.

Appendix

v

B . |

TABLE OF CONTENTS

Title

PARALLEL EXECUTION OF THE DYNAMIC PRO-
GRAMMING TECHNIQUE« . .

1. Dynamic Programming
2, ParallelSolutionModel + . . .
PROGRAMMING OF THE DYNAMIC PROGRAMMING
TECHNIQUE FOR THE IBM 7090 (SEQUENTIAL) . .
1. Introduction . « . . . + ¢ & ¢ ¢ ¢ ¢« ¢ o ¢ o
2, Activity FunctionReturns
3. Maximization . . « . ¢ o 0 0 0 0 0 e e
4, LookupP .« ¢ ¢ ¢ ¢ o ¢t s e 0 4 s e e s s e e
5. Flow Charts and Program Tables
PROGRAMMING OF THE DYNAMIC PROGRAMMING
TECHNIQUE FOR MACHINE I (PARALLEL)
1. Introduction ¢« « « o v « ¢ 4 o o

2. Narratives and Programs + « . .
3. Results « ¢« s v ¢« ¢ o o ¢ s o ¢ o o s
4. Comparisons and Conclugions

PROGRAMMING MANUAL FOR MACHINEI.
1. Machine Organization for Machinel
2. Instructions . . ¢ & ¢ ¢ 4 ¢ 4 4 e e e e e e
3. Number Representation + « «

~iii-

17
17
18
20
21
22

43
43
43
83
102

111
111
112
126

A .
- e uE

WEBEI 25 TS N R

" O

TABLE OF CONTENTS

Vi

¥
&

Vil

-t

Title

BI-TONIC SORTING ¢ « ¢« « v v o o &
1. Introduction

2. DBi-Tonic Sequences.
3. Bi-Tonic Sorting Operators . . .
4

Conclusions ¢« ¢ ¢ o & &

BASIC ORGANIZATION OF MACHINE I .,
1. Introduction

2. The Problem of Accessing Data in Computer
Organizations

3. A Multiaccess Self-Sorting Memory Organiza-
tion . .
4. Parallel Computer Organization .

5, Conclusions & v v ¢« ¢ 4 o ¢ « o o

PARALLEL MERGING-SEPARATING NETWORKS .

1. Introduction .

2. Functional Description of a Merging-Separating
Memory .

3. Parallel Memory.

4. Conclusions

PROBLEM SELECTION FOR A PARALLEL PROC-

ESSOR

1. Introduction

2. Jacobi's Method

3. The Relaxation Technijue .

4. Numerical Solution to Laplacc’'s Equation .

MACRO INSTRUC‘TIO‘JS FOR A PARALLEL PROC-

ESSOR

l. Intreduction .

2. Definttions.

3 . tetions

-i'.

139

140
158
161

163
163

io3
167
181

183
.33
183
188
192

223
223
223
223

o A

TABLE OF CONTENTS

Appendix Title Page :
X PARALLEL COMPILATION 235
I. Introduction . . . & « & o ¢ 4+ ¢ o s o & o & 235
2. Parallel Compilation « + &« & 235
3., Simulationand Results 245
X1 FURTHER NOTES ON PARALLEL COMPILATION . 263 ‘
1. Introduction + . « 4 o ¢ o « « ¢ o & 263 ¢
2. Problems of Implementation. 263
3. Suggested Modifications 265
4. Conclusions v v v o &4 ¢ o a o s o o 283
5. Listof References « 4 . 283
X1 PROGRAMMING OF THE SEQUENTIAL COMPILA-
TION ALGORITEM FOR THEIBM 7090 285
. Introduction ¢« ¢ ¢ ¢+ ¢ ¢ ¢ o o 285
2. Description of Algorithm 285
3. A Simplified Approach to (,ompﬂmg Substitu-
tion Expressions o e . . . 295
4. Charts, Assembly Lutmg, and Tumng Equa-
tions PN . . 298
X1 MACHINE I PROGRAMMING 3258
. Introduction + ¢« ¢« ¢« « ¢« ¢« o o o« ¢ & 325
2. Discussion of the Program. 325
3. Results and Comparison. 333
4. Object Program . . . « « « « ¢ o« o s o o 334
~lv PROGRAMMING MANUAL FOR MACHINE Ll . . . 357
1. Introduction ¢« . . o v 0 0. 357
2. Drief Description of Machine 387
3. WordFormats . . . « v ¢ ¢« « o 4 « « o o 357
4, Operations. ¢« ¢ ¢ v v s o v e e B 1.10) 1
S. Example Programs+ « . 368
Conclusions ¢ 00 o 3t l
.v-

o -

TABLE OF CONTENTS

Appendix

Title

L s el S SRR S R TR R R - TR e e e ITREY e My
5. I

Xv

XVl

7. Operations that Leave a Result,
8. Operations that Leave NoResult . . ., . . .

BASIC ORGANIZATION OF MACHINE II
I. Introduction « « « + « « .« &
2. General Description
3. Mermory . ¢« v ¢ v s« o 0 s 6 s e e a e
. Processors v 0 v e

. Task Level Computer

4
5
6. Memory Request Sorter.
7. Multiprocessor Control
8

. Conclusions v ¢ ¢ & ¢ o « o « .

PARALLEL NONNUMERIC PROCESSING
1. Imtroduciion ¢« . . + & . .
2. Nonnumeric Processing
3. Classes of Properties.

Some Present-Day Nonnumeric Processors .

Content- Addressing by Structure-Addressing
Structure-Addressing by Content- Addressing
A Sorting Memory as a Multicomparand CAM
A Parallel Nonnumeric Processor . . .
Algorithm for Parallel-Structure Searches

Conclusions . . . ¢ . v v e e e e e

.

List of References « « « « « .

evta

T B

s S

LIST OF ILLUSTRATIONS

et b AR

Figure Title Page
1-1 Sequential Dynamic Programming Flow Chart , . . . 5 ’
I-2 Sequential Optimai Allocaticn Readout 8
I-3 Readout Process for Paralle: Sclution Model 15
1-4 Readout Process for X = 2.0 « ¢« « « . 16
II-1 Activity Function Control Flow Chart, IBM 7090 . . . 23
11-2 Activity Functions | and 2 Flow Chart 24
-3 Activity Function 3 Flow Chart., 25
-4 Activity Function 4 Flow Chart. 26
I1-5 Activity Functions 5 aud 6 Flow Chast 27
11-6 Maximization Function Flow Chart, 13M 7090 28
1.7 Lookup Function Flow Chart, IBM7090. 31
11-8 Table Layout, IBM7090. 42
m-1 Activity Function 1 Flow Chart, Machinel , 446
;-2 Activity Function 2 Flow Chart, Machine [. 43
1i-5 Activity Function)} Flow Chart, Machinel . . . , . 51
UuI- 4 Activity Function ¢ Flow Chart, Machinel 1)
1.5 Activity Function 5 Flow Chart, Machinel T
.6 Activity Function 6 Flow Chart, Machinel 74 .
ne-7 Maximisation Function Flow Chart, Machizel 17 |
-8 Lookup Function Flow Chart, Machine g¢ -
_ y
-vit- i

LIST OF ILLUSTRATIONS

Figure
111-9
I-i0
ai-11
u1-12
I11-13
1-14
uI-15
IT1-16
mI1-17
I-18
1I-19
II-20
I-21
VI-1
VI-2
VI-3
vl 4

VI-5
VI-6
V1.7

VI-8

Title

Activity Function 1 Timing Cha t, MachineI . . .
‘ctivity Function 2 Timing Chart, MachineI . . .
Activity Function 3 Timing Chart, MachineI .
Activity Function 4 Timing Chart, Machinel . . .
Activity Function 5 Tiining Chart, MachineI . .

Activity Function 6 Timing Chart, Machinel . . .

Maximizatica Programs Data Flow Diagram, Machine I

Maximizaticn Program | Timing Chart, Machine I .
Maximization Program 2 Timing Chart, Machine 1.
Maximization Program 3 Timing Chart, Machine I .
Maximization Program ¢ Timing Chart, Machine I .
Maximization Program 5 Timing Chart, Machine I,
Processor-Usage Chart, MachinelI.
Symbol for a Comparison Element

A 13-NOR Comparison Element , . .,
Symbol for an Mm n Merging Network

Construction of Mm n from Two Subnetworks and a
’

Set of Comparison Eiements
MlO, lMerging Network

M Merging Network

12, 4
Bi-Tonic Merging Network, .,
Construction ot N q from Two N q-1 Networks and

Zq_x .Z 2
Comparisons

viit-

.

100
101
103
105
107
142
143

144

145
147
148

150

150

LIST OF ILLUSTRATIONS

Figure
VI-9
Vi-10

VII-1
Vii-2

VIiI-3

VII-4

VII-5

VII- 6
VII-7
VII-8
VIiI-9
VII-10

VIII-1

VIII-2

VILI-3

VIL-4

VIII-5

VIII-6

Title

Construction of N e v e e e s e
Zq

A Multiaccess Memory with 29 .
Requests + . .
Merging-Separating Memory Cycle .

Example of Word Interchanges .

Sixteen-Word Merge Arranged for Same Wu-mg Pat-

tern between Each Pair of Levels .

. . L] L] L] . L]

2P*! words and 2P

° . . L . L]

Eight- Element Version of 16-Word Merge. . . .

Exarnple of Use of Same Wires for Merging and Sepa-

rating - . 1 . . [] - . * *» [] * . L
Digit Store (i

p-Group for the Comparison Circuit

Digits in an Element) .

Word Store for 36-Bit Words (3-Level Cascade) .

Ring-Sum Element

Ring-Surmn Trze for 64-Word Memory .

Run 1, Simultaneous Displacements,
A(+), 12 Iterations

Run 1, Simultaneous Diaplacements,
B{(X), 11 lterations . .

Run 1, Simultaneous Displacements,
C(), 12 Iterations

Run 2, Simultaneous Displacements,
A{+), 12 Iterations

Run 2, Simultaneous Displacements,
B(X), 12 Iterations .

Run 2, Simultaneous Displacements,
C(), 12 Iterations

~iX-

* . .

Approximation

Approximation

Approximation

Approximation

Approximation

Approximation

155
166
168

169
170

171
172
173
174
175

176

197

198

199

200

201

202

oo - h A A

LIST OF ILLUSTRATIONS

1& Figure
VIiii-7

VHI-8
VII-9

VIO-10
vii-11
VII-12
vViaI-13
VII-14
VIII-15
VII-16
VII-17
VIII-18
VIII-19
VIII-20
VII-21
X-1
XI-1
XI-2
XI-3
XI-4

X1.5

Title

Run 3, Successive Displacements, Approximation
A(+)' 12 Itel'ationﬂ . L) . LI} » 0] * . . * » .

Run 3, Successive Displacements, Approximation
B(X), 12 Iteraticns « ¢« v ¢ « o o o o

Run 3, Successive Displacements, Approximation
C(), 121Iterations « ¢ « v « ¢ « « &

Parallel Fill-In+ . .
Parallel Fill-In, Runl « . . + .
Parallel Fill-In, Run2 « ¢« « « + « =
Parallel Fill-In, Run3 .,
Parallel Fill-In, Run 4

Paralle]l Fill-In, Run5 . . .

Parallel Fiil-In, Run6
Parallel Fill-In, Run 7

Parallel Fill-In, Run 8

Parallel Fill-In, Run 9

Parallel Fill-fn, Run 10, + . . .+
Parallel Fill-In, Run 1.

Parallel Compilation Algerithm . .

Translation fromm MAD to Reverse Polish Notation .

Flovw: Chart for Parallel Compilation ,
Graphical Interpretation of List (§).
Subroutine for Finding LJ. e e e e e e e e
Subroutine for Finding R)

Forraat of an Input String of Items

Page

203

204

205
207
209
210
211

212

214
215
216
217

218

LIST OF ILILUSTRATIONS

Figure
XiI1.2
X1I-3
X11-4

XIlI-1

XI1-2

XI11I-3

X111-4

X1I-5

XII-6

X1I-7

XII-8

X1v-1

X1v-2

X1iv-3
XV-1
Xv-2
XV-3
Xv-4
Xv-5
XV-6

XVIi-1

XVi-¢

Title Page r\
Compiler General Flow Diagram + . . 291 §
An Arithmetic Operator General Flow Diagram . . . 297 1‘
Compiler Flow Chart + « « « + o o o o o & 299 ;
Flow Chart for Triple Generation Process, 335 V\
Master Flow Diagram. & o« o « « « o & 336 |
Able, Baker, Charlie Subroutines, 337
George, Joe Subroutines ¢ . . . 338
Easy, Fox, Halo, Ipswick Subroutines 339
Dog, Koala, SP, SPU Subroutines , . 340
SPB, GENOil Subroutines . . . « ¢ & « + o « « & & 341
GENO02, GEN(03, GENO4 Subroutines 342
Block Diagram of Machine II. « « « ¢« &« « & 358
Example of POLY Program . . . «. « & « ¢ &« « « & 369
Example of TREE Program . . « « + « « o s « o 370
Block Diagram of MachineII. « & 375
Memory Word Format. . . « « + ¢« « ¢ « o o o s 377
Memory Request Formate « « + « + « & 383
Muliiprocessor Control Word Formats 385
Operand Requeat Format « « « &« ¢« « « & 387
Timing Charts + . ¢ ¢« ¢ ¢« ¢« v v ¢ o o 389
Word Formats in a Multicomparand Content-Addressed
Sorting Memory ¢ ¢ ¢« ¢ o ¢ 0 00 e e s 398 -
A Parallel Nonnumeric Processor, . . . 402

*
-Xi-

-

i

LIST OF TABLES

Table Title Page
1-1 Activity Returns for EquationI-9 6
g 1.2 Sequential Maximization of Equation I-9 7
} 1-3 Parallel SolutionModel 13
" 1-4 Parallel Maximization of EquationJ-9 14
II-1 IBM 7090 Execution Time for Dynamic Programmin
: Problem. . . « . v v ¢ v 4 s e s e e e e e e e 32
J 1.2 Activity Function Control Program, IBM 7090 32
' ;‘ 1I-3 Maximization Function Program, IBM 7090 Kk
‘ I11-4 Activity Functions Program, IBM 7090 35
i 11-5 Lookup Function Program, IBM7090. 39
% 11-6 CommonStorage « « ¢ o ¢ + o o o o o 40
| § 111-1 Activity Function ! Program, MachineI . . ., . . . 45
; 111-2 Activity Functions 1 and 2 Data Vector Formats, Ma-
chinel . . . & ¢« ¢ v ¢ i i i e e e e e e e e e 46
1I1-3 Activity Function 2 Program, MachineI 49
111-4 Activity Function 3 Program, MachineI 53
‘ 11-5 Activity Function 3 Data Vector Format, Machinel . 57
1I1-6 Activity Function ¢ Program, Machinel . . ., . . . 60
; 11-7 Activity Fﬁnction 4 Data Vector Yormat, Machine I . 68
1a-8 Activity Function 5 Program, Machine ., 72
11-9 Activity Functions 5 and 6 Data Vector Formats, Ma-
chinel . . . ¢ v v ¢« v ¢ v o v e e s e e e e 73 -
-xiti- .

LIST OF TABLES

I1-10
I11-11

Im-12
il1-13
1 111-14

1I-15
1I1-16

VIII-1

X-2
X-3
X-4

X-6
X-7
X-8
X-9
X-10
X-11
X-12
X-13
X-14

Table

Title

Activity Function 6 Program, Machinel

Maximization Function Program, Machine I .

Maximization Function Data Vector Format, Machine 1

Lookup Function Program, Machinel.

Activity Function 3 Minimum and Maximum Outiput-
Data Times, MachinelI

Activity Function ¢ Minimum and Maximum Qutput-

Data Times

L3 . . . - . . .

Comparison of IBM 7090 and Machine I Execution
Times, Dynamic Programming Problem

Residues after Twelve Iterations for Runs 1, 2, and 3

Precedence Hierarchy,

Replacement Statement Set

Results
Results
Results
Results
Results
Results
Results
Results
Results
Results

Results

after Pass
after Pass
after Pass
after Pass
after Pass
after Pass
after Pass
after Pass
after Pass
after Pass

after Pass

Triple Summary

—

xiv.

— T T S TR

90

95

102
196
236
248
249
250
251
252

254
255
256
257
258
259
260

——

LIST OF TABLES

Table

XI1-1
XI1-2

XI1-3

X11-1
XI1-1
XIII-2
XI1I1-3

Title

Precedence Hierarchy for RPN Translation .

Example of the Compilation Procedure for Statement
(3) . Ld . . . L] . L4 . L] L] L] . L[] L[] . L . L [] (]

Example of List Expansion and Precedence Determi-
nation for Statement (3),

Hierarchy of InputItems.
LList . . . o . v v v v v e e e e e e e e e e
PList Status and Compiled Triples

Compiler Program
Object Program + . v ¢ v v + « 4 4 W

Task Levels at Successive Execution Cycles Assuming
a Given Initial Condition ,

-XVa-

Page
268

281

282
286
327
327
343
355

382

L

APPENDIX I - PARALILEL EXECUTION OF

THE DYNAMIC PROGRAMMING TECHNIQUE

R o o S

1. DYNAMIC PROGRAMMING

Dynamic programming is a mathematical technique devised by Bellman®

i} for maximizing a function of n variables:
F n
R (x}, %50 o 0 oy x) = E g,(x;) (I-1)
. 1= 1
where
. g,(0) = 0and
g;(x;) 2 0
over the region
n
Sn(x) : (xl. Xor oo e xn)l Z X, = XX, 2 04. (I-2)
i =1

The dynamic programming technique is directly applicable to allocation

problems.

Consider the x of Equation [-2 to be a resource that is to be allocated to
aome n activities. Let X, denote the allocation to activity i, and gi(xi) the

resultant return from activity i. Then the total return from all n activities

' may be expressed by Equation I-1. The problem is to determine an op-

timal policy of allocation,; that is, to maximize Equation -1 and :
% 3 :
4 Beilman, R. E., and Dreyfus, S. E.: Applied Dynamic Programming. .

Princeton, N.J.. Princeton University Preas, 1962.

.l-

_—

A —y

%

A
~ e m— g s
s - - - ~ 8

M,

.t

APPENDIX I

determine the allocations by which the maximization is effected. The dy-
namic programming solution to the maximization problem rests on the
"discretization” of the range [0, x]and the application of Bellman's prin-
ciple of optimality, which may bel stated: "an optimal policy has-the
property that whatever the initial state and initial decision are, the re-
maining decision must constitute an optimal policy with regard to the
state resulting from the first decision. nd

B
)
&
i
e
i,
el
5o
i
et g
g
ke
i
S
i
i

P SR

i In the execution of the dynamic programming technique, the following
: sequence is constzucted:

£,(x), fo(x), . . ., £ (x) (I-3)

where

max

Belx) = sk(x)["k"‘x' Xgr e "k’} | (1-4)
with
Rk(xl' PURIIRY xk) and Sk(x) as defined in Equations I-1 and -2,
Making the reasonable definition,
1)(x) = 0 (I-5)

and noting that fl(x) = gl(x), the following recursive relation can be de-
a
duced:

Lx) s o e g) e (x - x,)] (1-6)
k Oﬁxksxl_‘kxk ‘k‘l ka

thus establishing an inductive method for detsrmining the requence (1-3).

Equation -6 is just the mathematical expression for the principle of

' optimality; it allows the reduction of the problem of maximising one func-
tion of n variables to that of maximising n functions of one variable. In

Ibid.
-

APPENDIX 1

the execution of the dynamic programming technique, the following se-
quence also ia constructed:

xi(x). xz(x). PN xn(x) . , (1-7)

where xk(x) is the allocation to gk(xk) that maximized ik(x).

The heart of the dynamic programming technique, then, is the construc-
tion of the sequences (I-3) and (I-7), As mentioned above, computa-
tional considerations require the discretizing of the range [0. x]. say into
the partition

O=t0< tle tz<...~'tn=x (1-8)

where t, = Ai for some fixed \. A partition such as (I-8) often is de-
noted compactly by "a(A}b, * which is read "from a to b in steps of &. "

The calculation of the sequences {I-3) and (I-7) over the partition

(1-8) requires that {gi(x)} be calculated cver the partition. For illustra-
tion of the dynamic programming technique, consider the maximizing of
the following:

1
Ré(xl, Xy X3, X4 Xgo xb) = X, + x?_2 + x3-2- + 2 sin x, +
8s(xg) + B lx() . (1-9)
where
2xg if 02 x, &1
stcs) © 4-2xgifl 2 e ¥ 2,
and

Bplxg) * 2/%, -

subject to the constraint

«3.

APPENDIX 1

_ >)
E x, =% x 20, (1-10)

i=1
with[x] denoting the greatest integer in x.

This is to be done for each x = 0(0. 1)2; that is, for x from 0 to 2 in steps
of C. 1. A flow chart for a sequential dynamic programming solution of
this problem is given in Figure I-1, For any solution model, it will be
necessary to evaluate the set {gi(xi)} at each point of some partition, For
the present problem, the partition 0(0. 1)2 is chosen, and the functional
values are recorded in Table [-1., From this table, the sequences fl(x),
fz(x). e ey fb(x) and xl(x), xz(x), R xb(x) can be determined and
recorded as in Takble I-2, Recalling that xi(x) is not necessarily unique,
note that Table I-1 contains the information necessary to determine all
optimal policies a® indicated in Table I-2,

Now consider a method for reading out an optimal policy for a given re-
source from Table I-2. The method is simply this: Given a resource x,
(0 = x = 2), select x6(x), with X the allocation for g6(x). Now select
xg(x - x6), which is just Xg, the allocaticn for gs(x). Next select x4(x -
Xg " xs), which is just Xy for 34(x), and so forth until the allocations X)
Xp0 o o .y Xg are determinecd for the activities gl(xl). gz(xz). e e
36("6}‘ A flow chart for the readout method is given in Figure I-2; this
chart ignores multiple solution, but 1ll sclutions are indicated in Table

I-2,

As an example of the readout process, suppose that x = 2,0, Then from
Tabie I-2 it can be seen that the following allocations for (x,, x,, X,
Xg Xgr %) yield £,(2) = 4,12 return: (C, 0, 0.1, 0. 0.9, 1.0), (0, O,
L
0.1, 0,4, 0.8 1.0). (0,0, 01,02, 07, 1.0), (0, 0,0 0.1, 0.3, 0,6,
§ 1. 0). This multiplicity of uptimal policies is a result of the nonunique-

ness of {xi(x)}.

-4

v o ik e P e, - e - ~—
T e G, T SR

APPENDIX I

NO L_-——D !
f,1x) = 0 FORALL X = 0(0.112 F—ds?
.

Xk(X) =0

1

- ac “k' x ool g "x - X (X)

= By NO
YES

B=a

y = X 00

1

Xk!X) = Xk(X} +0

-l

2

YES
Lx = 8
X ix =y

NO

Figure 1-1 - Sequential Dynamic Programming Flow Chart

5.

e ot e T - Y T S 4
L o

APPENDIX I

The solution model for the dynamic progiamming problem considered

here specified the calculation of each of the functions fl(x), fz(x), e
£6(x) over the range 0{0. 1)2. Hence, if only the first k activities, k S 6,

are to be considered, the optimal policy for a given x can be readout out

easily from Tatle 1-2,

from Table -2,

For example, letx = 1,5and k = 4, Now
f4(l. 5) = 2.43, which is achieved by the following
allocations for (xl. Xy X3, x4): (0.3, 0, 0.2, 1.0), (0.2, 0, 0.3, 1.0),
(0.2, 0, 0.2, 1.1), and (0.1, 0, 0.3, 1.1).

The solution model described above and outlined in Figure I-1 for the

solution of an optimization problem by dynamic programming is sequen-

tial in nature. It involved computing first gl(t) for t = 0(0.1)2, then

TABLE 1-1 - ACTIVITY RETURNS FOR EQUATION I-9

1 2x, 0% x ¥}
x gl(x) = x gz(x) = xz gaylx) = x% gqix) = 2 #inx 8g(x) = 4-2x, 1S xS l8eln = Z[x]
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.1 0. 01 0. 32 0.20 0.2 Q.0
0.2 0.2 0. G4 0 4% C. 40 0.4 090
0.3 0.3 0. 09 0.53 0.60 06 0.0
0.4 G. 4 0. 16 0.63 0.78 0.8 0.0
0.5 0.5 0.25 0. 7% 0.96 1.0 0.0
0.6 [UR) 0, 36 0.77 1.14 1.2 0.0
G. 7 0.7 0.49 0. 84 1.28 1.4 0.0
0.5‘ J.8 0.4 0 89 i 44 16 0.0
9 2.9 0. 81 .95 L. 56 1.8 00
1.0 1.0 t .00 1.00 1 b8 20 2.0
| [1.2} (L i 7e [] ¢ u
1.2 12 1. 44 il i so b 2.0
i3 1} .69 1 13 L v2 14 0
1.4 1.4 i 96 I 18 1 9y b ¢ e 0
1.6 i % 2. 2% 122 & 00 10 2 0
[) il o 2 S [2 00 0N P
1.7 1.7 3 89 i M [)] L} FaR Y
18 1.8 3 24 1 34 [} 4 én
19 1 9 3 bt ST t 90 LENS 2 0
2.0 2.9 4. 00] 1 82 00 1.4
-6
S T T T TR TS e,

APPENDIX I

tions for a given resource,

The whole solution model was sequential, but

gz(tr for t = 0(0.1)2, and so forth until gb(t) wae computed. These re-
sults make up Table I-1. From this table, the sequences il (x), fz(x),
. e ey f6(x) and xl(x), xz(x), . x6(x) were computed sequentially for

Finally, a readout process was specified for determining optimal alloca-

the method of dynamic programming itself is not essentially sequential in

Now it will be indicated how parallel aspects of the dynamic programming

method may be exploited in a solution model similar to the one described

TABLE I-2 - SEQUENTIAL MAXIMIZATION OF EQUATION I-9

fi(x}

X (%)

fé(x)

xg{x)

-

(5

[

[2%

L

fe

e

S S R

4
0
0

0
32
45

i85

e w

(3
5

P 8S

99
0s
1%
2%
}&
53
‘6
1|
¥

T

[

I

0 b

s}

o

0

32
52
7

82
[+
24
L1
60
T
n
Gl
13
Z)
33

i 4

s

a9

hd
.

61

Uil

o o o

S L D e e e

(]

® 0O s s
- o < S O
o €«

-

-

R LR SV .
SE -0
[=3

o
o

-4

-7 o

fs(xﬁ X ()

°

> AT I
cC O 0 0 O o O O

O A b

C O O T O O
-
- & -3
e
o < O O O O
o

[P 3
(23
(=3
r~

[« TR <IN 3

e v N
PR
e
o o O
e e s 3 bt s S e

e e e e

APPENDIX I

K =g
L e o
£ =x
< PRINT fk (B) >
a = xk;‘B)
< PRINT K. a >
B-B-a
K - K-
|
NO < w
. K - -
-’
& YES
‘ 0
. Figure -2 - Sequential Optirnal Allocation Readout
-8.

% TR TR T e, - EERE R -~

- — . SN~

APPENDIX 1

2, PARALLEL SOLUTION MODEL

Consider the problem of maxiinizing, by dynamic programming tech-
niques, the function
2N
RZN(xl' Xoo v v o xZN) = gi(xi) . (I-11)

i=

where ¢N variables are assumed for convenience., Let

x1+x2+...xN=y1 (I‘IZ)
N+1P*N+2t - %N T Y2 (I-13)
with
Yyt =%
max
U.N(yl) = i 2 [gl(x1)+
(xl.xz....xN)‘ xi-yl
i=
gz(xz) +. .. ¢t gN(XN)] . (I-14)
max
Valya) = i« . . | .
N+ 1" *N+2 ' "N % (T Y2
i=N+1
[3N R N L P N 71 ka3 1 B L
Now Uy(y,) and V(y,) may be computed independently and thue in parallel,

using Equation 1-6, This equation then can be used to maximize the sum

UN(YI) + VN(yz) over

!(Vll Yz)'Yl ty, ® x}-

.9. “

A S — T A M L w—— - e — Ny >~
i - . : 5‘) ;"

APPENDIX I

Since computer time is approximately proportional to the number of vari-

ables, the sequential solution time for the maximization of Equation I-11
is proportional to 2N; the corresponding parallel solution time is pro-

porticnalto N+ 2, If ZN variables were involved, the ?.N -1

pairs first
could be processed in parallel, then the resulting ZN -2 pairs, and so on.
The sequential solution time for the case of ZN variables would be pro-

N

portional to 2°'; the parallel solution time would be proportional to 2N,

In addition to parallel aspects of the maximization of (I-11), parallelism
exists at the lowest-level computations (fundamental and subroutine type
computations). For example, initially the 2N vectors [gi(0), gi(A),
g;(24), . . . gi(x)] i=1,2, ..., 2N can be computed in parallel,

As a specific example of the injection of parallelism into a2 dynamic pro-
gramming solution model, consider now the example problem introduced
above; that is, the maximization of (I-9) under the constraint (I-1C).

The several activity functions of Equation I-9 are independent of one
another and hence can be calculated in parallel on a parallel processor.
However, efficient use of a paraliel processor prohibits parallel computa-
tions that contribute little cr nothing to improved solution speeds, and hence
tax machine capacity unnecessarily, Since the calculation of the sequences
(1-3) and ({I-7) is the ultimate goal of the dynamic programming tech-
rique, values for the activity functions {gi(t)} need not be calculated prior

to the time when the values arc needed in the computation of (1-3) and
(I-7).

Consider a partition xo(A)x to be used in the dynamic programming maxi-
mization of a function of type (i-1).

In general,

| max

f +i34) = Ix + id) + +{j ~ i1)A . -16
Lxg +i8) Oéiéj[akx)+ gy (x+ G- 00) {-16)

Hence, to calculate lk(xo + jQ) only the following values must be known:

-10-

APPENDIX I

oo alxoh Gl qlxgt 8) - By (xg +04)
and (1I-17)
gk(xo)l 8k(x0 + A); e sy gk(xo + JA)

and the calculation of the sequences (I-3) and (I-7) can in fact be

carried on in parallel with the calculation .f the activity functions {gi(t)}.

Now for the parallel execution of the dynamic programming maximization

of (I-9), make the following definitions:

max
ux) = 40 s [s (y)+ g (x-y)].
1 0=y 2 x|®2 1 (1-18)
yl(x) = y at which the maximum occurs;
ma
u,(x) =
yz(x) = y at which the maximum occurs;

max
ugla) = g5 <, [egtn) + mgtx -]

X
0fys x[34(”) + gglx - y’] ’] (1-19)
] (I-20)

y3(x) = y at which the maximum occurs;
max .
u (x) = 5g s u(y)+u(x-y)].
y4(x) = y at which the maximum occurs,
max
nelx) = 5 ¢ s [u(y)*u(x-y)].
5 02y 2 xt 4 3 (1-22)
ys(x) = y at which the maximum occurs.

Consider the partition 0{0. 1)2 in terms of X5 = 0Oand & = 0.1, and then
N, T Xgtid = 0. 1,2 ..., 20, Achart can be constructed showing

the level-by-level parallel execution of the dynamic programmang

N

APPENDIX 1

maximization of (I-9), as in Table I-3, It will be noted that in

Table I-3 a level corresponds to a new stage of computation for the
activity functions {gi(t)} and return functions {ui(t)} over the partition

t = xo(A)x = 0(0.1)2. Computation of the sequence yi(t), i=1,2,...,
5 has not been indicated, but the required values are an immediate con-

sequence of the calculation of the sequence ui(t). i=1,2,...,5.

As shown in Table I-3, the partition xo(A)x and activity functions
gi(x), i=1,2,..., 6over the partition can be calculated in 21 levels
through parallel computation. The same computations, performed in a
sequential manner, would require 141 levels., A further indication of the
parallel characteristics of the dynamic programming technique and the
power of parallel processing is seen in that only three additional levels
of computation allow the complete maximization of (I-9) to be effected,
Sequential techniques would require 110 additional levels of computation,
Hence parallel techniques offer a tctal advantage of 24 to 251 for the
problem at hand. The difference in computational levels required by
parallel and sequential models indicated here, striking as it is, only
begins to point out the increased computational speed offered by parallel
execution of the dynamic programming technique, since no appeal has
been made to parallel execution of basic machine instructions effecting

the individual computational levels,

The results of the parallel dynamic programming compuiation for Equa-
tion I-9 are given in Table 1-4. A generalized readout process is
given in Figure I-3. A specific readout ror x = 2,0 is given in Fig-

ure -4,

In Table -4, the maximum possible return of us(Z) = 4,12 is achieved
~ for the following allocations tu (xl, Xy Xy X, g, xb) = (0, 0, 0.1,

0.3, 0.6. 1.0), (0, ¢, 0.1, 0.2, 0.7, 1.0), (0, 0, 0. 1, 0.1, 0.8, 1.0),

and (0, 0, 0.1, 0, 0.9, 1.0) These allocations agree, of course, with

those from the sequential computation.

-12-

APPENDIX I

TABLE 1-3 - PARALLEL SOLUTION MODEL

]
tovel| Partition | 8150 | 82000 | 8300 | g0 | ggtx) | ggte |uw00f | uyta) | uso0 Jagm | ougto
[X = xn*A gl(xo) gz(xo) 53‘”0) 54"‘0) A P P o
! xz = xl + A 51“1’ !Z(xl) '3(’51) l“‘l) “5“0) '6“0) “l(xo) “z‘*o) e P
2 Xy = xz+A gl(xz) gz(xz) lj("z) g‘(xz) gs(xl) '6("!) ul(xl) “Z("l, “3("0; “‘4('0) o
3 ke = X3+ A | g0xg) TRa(xy) 1gaixg) [Rg(xy) [8gix) | 8gx,) T lxy) [uyixy) [ugixg) |u,ix) uglxy)
4 kg = Xet & | g lxg) Puapixg) [8alxg) [aglxg) gelxy) golx3) |udng) fuylxg) jugixg) |ugxy) fuglx))
5 X = X+ O | gy(xg) [Bp(xg) [831xg) [BgIxg) [melxy) Prolxg) Jujlxg) |uplxg) juglngd judxg) |ugxy)
6 Xy = x4 8 | gyixg) | 8yx) fyix,) | 840xg) | @gixg) | gelxg) fu fxg) [uyixng) | uglxg) judxs) |ugixy)
7 xg = X+ A | gilxg) | Byl%g) [83i%7) [B(x%q) | Bgixg) | Relxgd [uplxg) [ualxg) |ujglxg) pu lxg) [ugixg)
8 X, = xg + & | g (xg) 1 gylxg) |83(xg) [Bylxg) [Bg(xg) [Bg(xq) [ujixg) [usixg) [wylxg) [uglx.) | agixg)
9 [xpg = xgt O [&)ixg) | 8y(xg) 18ylxg) [Bglxg) |Bglxgl |8glxg) [ujixg} [u,lxg) |uglxg) [uglx;) [uglxg)
VO gy = %ot 41 8ylx o) | Bplxyo) [B50x o) [841x10) [Bsixg) | Beixg) [uylxg) |uplxg) |uslxg) |uglxg) uglxs)
Woimyy =Xt ARyl)| gl i 8atxy) 8elx) [850X o) | Be(X o) [u3{x gl | uplx o) | uglxng) |uglxg) | uglxg)
12 dxyp = xp ¢ A g x) gl p) 1 83lx o) | Rylxy o) [8glxy } [Bglxy) [uplxy)] uplay) fuginy ol uglx, o) f uglag)
13 ey = 23 v A0 gl gyl 30 | 3lx) 30 | B4l 3) | Bgixy) (Bglxyp) | uylx)p))l uplx o) [uglxy))l uglx))i uglx;q)
Y xgg Xyt B gk gh] gp(x g) LRy(x) | Beix)g) [Betx)3) [g X 3) | uy(xygh] uplxyg) fuglx) fuglx;))fugle)))
15 Ixyg = 2jg v A g)(xy o) 850x) 183lxy) [Blx)g) | Blx q) [Bl g) | uylxygdi dplx)T ugt (b} uglx 4] ugley,)
16 dxpq = X+ 81 gylmg) [8plx) [B30x) | B4lx o) | 8ix g) | Bgixpg) | uy(xyq)f uplxyg) | uglx o) | uglx))| uglx,q)
17 1x)g = Xy + 8 8)(xp7) | 8p0%7) | R3lx)7) 1 840%y7) g%) | Belxyg) [uylxq)) uplxy o) [uglxyg) | uglx) g} [uglxyq)
18 xyg = xpg+ 8] gylx gl i Bplxyg) | Balm)g) | Be!x g) [Bslxy7) | Belxypd | uglny)| uplx g} ugln o} uglx)| uglx)g)
19 Ixa0 7 Xy + A7 8y{x g} | 85019) [830x)5) [B¢l*)q) | Bslxyg) | 8(x g} 1 uylx g) [uplxyg) | ugla)| uglx 1) f uglxgi
20 N 8)0xz0) | B2f%20) | B3(%30) | B4iXa0) | Bs(X (g7 | 8p1xyq) [uj{X q) | Uplmeqh| uylx g} uglx g} uglx)q)
21 B R BN R 35("20) ‘6("20’ “1"‘20’. “2("20) u,(x”) u‘(x”) “s"‘n)
22 R “3"20‘ "4(‘20) us(x”)
23 S ugtagg)
.‘.‘(x) (withi = 1, 2, . . ., 6} delined as on Page 3.

i
~

“u (x) (with i , 8) defired as on Page }1.

For a resource of x = 1,6, the maximum return of us(l. 6) = 2.57 oc~-
curs for the allocations (0. 1.5, 0.1, C) if only the first four activities

are considered.

3, CONCLUSIONS

Dynamic programming has been introduced and illustrated by a specific
ecample. The dvnamic programming technique was examined for se-
quential and parallel characteristics. Parallel characteristics were

noted and found to provide a bas.# for significant increases in procesting

-13.

APPENDIX I

TABLE 1-4 - PARALLEL MAXIMIZATION O EQUATION I-9

x | V)] volx) funfn) |oyylx) Jugix) ALY u,ix) Ygix) agix)
0000 0.0 0.6 [oo0 0.0 0.0 00 |00 00
0.1]00 0.1 jo.o 0.2 Jou 0.2)01 03201 0 32
0.2]0.0 0.2 fo.1 0.52 | 0.0 0.4 02 052102 v 0.52
0.3)00 0.3 |oa.2 0.72 0.0 0.6 05 072102, 03, 04 072
0.4/00 0.4 |03 092700 0.8 [0 4 092 01,02 03 04}092
0.5}00 0.5 104 11e foo 1Lojos 110 01,02, 03, 04112
0.6 0.0 0.6 109.5 1.28 19,0 1L.2joes 1.28 101,02, 03, 0.4]1 32
6.7 00 0.7 |06 1.46 | 0.0 L4]o7 1.46 | 01,02 03, 041152
0.8]0.0 0.8 {0.7 L6d leo 1ejos 160 [0.1, 02,03, 0.4]172
0.9 j 0. 0.9 |o.8 176 | 0.0 L8 {09 17610k, 02,03, 04)192
i.clo 1.oj1o0 jc8 1.89 |0 Lo 2010 18901, 82 03 04212
L] 12109 2,01 Lo 22111 201 [01,02 v 04)c 32
vzl 1.44li. 0 213 |0 2.4l12 2.13)01,02, 03, 04252
13|13 16310 L. 112,23 119 26|1.2 1.3 223]014,02 03 04,272
el 4 196411 23 lioe 28 [1.2.1.3, 1.4 233701, 02 03 04f29
15118 2.2541.1. 1.212.41 j10 302 13 14 2.43]01,02 03 04312
1.6 | 1.6 2.5u{l 1, 121249 | 1.0 32001 257 0 0...02 0.3, 04]3 %2
17117 2.89f1.¢2 251 1o 34700 289101, 02 63 04[35
18|18 d.24fi2, 13263 11 0 36jao0 324 100,02 03, 04372
19119 361f12 27010 800 361 001,02 03,0439
2020 4.00}1.3 27 f190 ¢0]40f00 400101, 02 03 04]412

time., The results indicate that construction of efficient solution models
for parallel processors depernds heavily on analysis of the problem and
machine at hand. so that machine capacity is not unnecessarily taxed in

parallel computations that improve sclution speeds very little if at all.

~14-

w -.&.L

APPENDIX I

1
J ALWAWILIY OL GALVIOTTIY SY b ANNOWY IHL NI 3DHNOSAM IHL L WYKL LNV IN S .m.. H) NOILVAION FNL AB

210N
&% Sxr®s *x)%s &0 E0ls Sarte
39 Cu% = Bl SN Sal M Tor-Tal B3 % - B0l B oo Ba) ot Tt
En S - da TaSa b
€n Sa- X = € n ::m> - S
.m: %)

Figure I-3 - Readout Process for Parailel Solution Model

-15.

T

APPENDIX 1

2.0

(0.4, 0.3, 0.2, 0.1}

0.0.0.0

i0. 0. 0. €}

0.0.0.0

10.4,0.5,. 02, 3. 1)

(0.1, 01. 0.

0 1}(0.3.02.¢.1.0)

(1.8, 1.7, 1.8, 1.9)

os. ¢.7. 0.8 an,o. 1.6. 19,10

Figure I-4 - Readout Process for x = 2.0

-16-

BN

APPENDIX II - PROGRAMMING OF THE DYNAMIC PROGRAMMING

TECHNIQUE FCR THE IBM 7090 (SEQUENTIAL)

INTRODUCTION

A dynamic programming problen. was programmed for a standard gen-
eral-purpose computer and for Maci:ine I to compare the operation of the

he IBM 7090 was chosen as the standarcd,

In programming the problem, no input-output operations are performed.
The program is assumed to be available in storage. The results are
atored in tables according to the table layout diagram (see page 42). To
obtain a recommended resource assignment for a given number of activi-
ties, the input data (N), the number of activities to be considered, and
the quantity of resource to be assigred (Xo). are assumed to be in stor-
age prior to starting the lookup routine, After the lookup routine is exe-
cuted, the recommended resource assignment to each activity is found in
the € output table.

Minimum and maximum program execution times are listed. These were
determined from .he gnoted minimum and maximum instruction execution

times in the IBM 70%. Programmers Reference Manual.

The activity functi : program controls the execution of the individual ac-
tivity functions, In this problem, 21 returns from each of the following

six actlivity functions are ~alculated:

]

g {x) = x,

Sah‘} =X *

g3fx) = V%,

R s

APPENDIX I

g4(x)=28inx,
gelx) = 2xif0 = x £ 1,
=4-2xif 1 £ x£2,

ge(x) = 2[x].

The returns for each function are stored in a table. When the returns for
all activity functions have been obtained, the maximization routine is exe-
cuted. The maximization routine examines the return table for each ac-
tivity function and a table of maximum returns for all previous activity
functions. Then, given so.ne resource, the returns from all resource
combinations as applied to the current activity and to all previous activi-
ties are calculated, The greatest return is obtained and stored. The
quantity of resource that generated this maximum return also is stored.
When all quantities of resource have been tested against all activities,

the result is a series of best policy tables,

The best policy tables contain for a given quantity of resource the portion
of that resource that should be assigned to the respective activity. The
remainder of the resource is then to be allotted to the remaining activities

in the same manner.

The lookup routine has as ar input the quantity of resource to be assigned
to the given activities, The best policy table for the higher-vrder activity
is examined. The entry in the table corresponding to the resource to be
assigned is examined and a recommended assignment obtained. The re-
maining resource 1s then apphed to the lower-order activities in the same
mar er. The result is a recommended assignment of resource to the ac-

- tiv s that will generate a maximum rcturn,

2. ACTIVITY FUNCTION RETURNS
a. General

The following are initialized: x . N, and &, with X ax the maximum

max

-8

% L R e) Lo T e s el Ao, a .

APPENDIX I

respurce that can be allocated to any activity, N the number of activity
functions, in this case six, and A the resource increment, in this case
0‘ 1.

The activity counter, k, is set to 1 and the returns for resource alloca-
tions varying from 0 to 2 in steps of 0.1 are calculated, When the as-

signed resource, x, reaches the maximum resource available, x

max
the activity counter is increased by 1 and returns for the second activity

are calculated.

When the activity counter has reached N = 6, the returns from all activi-

ties have been computed and stored in tables gk(x).

b. Activity Function]

The return from activity function 1, gl(x) x, for a resource assignment

of x is simply x.

c. Activity Function 2

The return from activity function 2, gz(x) = xz, for a resource assign-

ment of x is the square of the assigned resource, xz.

d. Activity Function 3

The return from activity function 3, g3(x)-‘- X, for a resource assignment
of x is the square root of the assigned resource, ~/x. The resource is
represented in the computer as a floating point number. An initial guess

for the square root 1s made,
G, = +(f+1)
k 2 ’

wherve f 18 the fracticnal pa-t of the floating point number. This guess is

the input to the iterative portion of the routine.

After three iterations where successive approximations are obtained from

1t
G v 1 'ka+Gk'

«19.

~Y

APPENDIX II

the exponent of the floating point number is tested to detsrmine the expo-
nent of the square root. Program control is then returned to the activity

function program,

e. Activity Function 4

The return from activity function 4, g4(x), for a resource assignment of
x is 2 sine x. The input to the series is R, the residue of x mod 27. The

sign of the sine is determined and quadrant correction of R is perforred.
Then

is calculated and used as input to the series; @ and @ are caicuiated and

stored. The nested series approximation,

2 2 2
alC, +a"(C, t @ (Cg ta C:,

is computed, the sign added, and the result stored. Program control is

transferred back to the activity function program.

f. Activity Function 5

The return from activity function 5, g,,(x‘,, for a resource assignment of

xis 2xfor 0 $ x & land4-2xforl§x§2.

g- Activity Function 6

The return from activity function 6, gy (%) = 2[x]), for a resource assign-

ment of x is twice the largest integer equal to or less than x.

MAXIMIZATION

The activity counter k is initially set to 1. The fk ;](x) table is initially
zeroed since the maximized returns from activity 0 are zero. The re-
source to be maximized, x, is initially assigned at 0. A storage location,
B, containing intermediate maximum returns,is initially set at a3 maxi-

mum negative value to enabie acceptance of the first return.)\'k 18 the

- e NP — ——

APPENDIX II

resource to be as:igned, under the problem constraints, to activily k and
to prior activities whose maximized returns for an assigned resource are

the entries cf the fk . l(x) table,

Index i = xk/A is used to determire the return from an assignment of re-
source x; to activity k. Index j = x - i/A is used to determine the return

from an assignment of resource x - x, to prior activities.

The sum of the returns, @, is stored and compared with any previous re-
turn for the given resource, 3. If the current return is larger than the
previous maximum retu=n, 3 is replaced by a and the allocated resource
that generated this return is stored in y. If the current return is equal

to or lege than the prévious maximum return, 8 and y remain unchanged.

Then X

maximum resource to be tested, 2 new set of indices, i and j, are cal-

is incremented by A and if it is less than or equal to the current

culated and the above process repeated.

When X, is greater than x, indicating that ull combinations of resource
X, subject to the constraints have been used to determine the maximum
return, then the value of the maximum return and the amount of resource
that generates this return are stored in the fk(x) return table and xk(x)
pclicy table, respectiv:ly.

Then x is increased by A and teated against X ax' If x is equal to or less
than X axt all combinations of x resource allocations consistent with the
problem constraints are tested. If x is greater than X ax’ then the £k(x)
table is moved to the fk . 1(x) table, and k is increased by 1 and tested.

If k is equal to or less than N, then the maximizing process is repeated.
If kie greater than N, the procedure stops.

At this time, return tables and policy tables are available in storage.

LOOKUP

In the dookup routine, k is initializsed with N, the numbaer of activities.

The resource to be allocated is stored in x, The xt‘h sntry of the policy

.zl.

APPENDIX II

table for the kth activity is obtained and stored in table 6. X is decreased
by the amount that is assigned to activity k. The diminished x is then ap-
plied to the k - | activity and a recommended policy obtained. This proc-
ess is repeated for the remaining activities. The end result is a table of

recommended resource agsignments to the k activities,

CONCLUSIONS

The sequential executicn of the sample dynamic programming problem
takes 0. 151 to 0.224 sec when programmed for an IBM 7090 (see Appen-
dix IIT for Machine I parallel execution). Approximately 570 words of

memory are used for program location and table storage.

FLOW CHARTS AND PROGRAM TABLES

Figures II-1'through 1I-5 are the flow charts for the activity functions.
Figure II-6 is the flow chart for maximation and Figure 7 is the lookup

function flow chart.

Table II-1 shows the execution time for the dynamic programming tech-
nique on the IBM 7090, Tables II-2 through II-5 show, resvectively, the
programs for activity function control, maximization, the activity func-

tions, and lookup. Table II-6 shows the common stcorage.

-22-

APPENDIX I

START
k=1
x=C
xk(x)
' {AFI
x = x+ A\

(>)
YES
k = ke
NO
k>N
vis

o

Figure II-1 - Activity Function Control Flow Chart, IBM 7090

23-

APPENDIX II

=

B‘(X\

#

x- g, TABLE +11

1

=11 =

BZ(X!

_

x° 82 TABLE + It

Figure LI-2 - Activity Functions | and 2 Flow Chart, IBM 7090

Ot

M o — e

APPENDIX II

. O

'

=1

il ®

Q+H 2
2

AF

Figure II-3 - Activity Function 3 Flow Chart, IBM 7090

-25.

APPENDIX II

SRIFXYINQY
m~R F xINQ2

TR F XINQS

z=2mr~RIF xINQ4

siN 1 = k[c1a + caa® + caa? + cra’)

sy -

Figure -4 - Activity Function 4 Flow Chart, IBM 7090

-2b.

AT T R T

v AR A

APPENDIX II

2Ux) » Q‘ TABLE + 1y

l

4 -2x)~ 5. TABLE + It

-

!

h=nh-=t

!‘(1)

|

e

|

o

)

_J

C * D:

C‘B‘TAGLE*ll

:{l

2~

£ TABLE * It

!

[4
l 0+ g, TABLE + 11

T
1

oy o=

Figure II-5 - Activit; Functions 5 and 6 Flow Chart, IBM 7090

27

%

APPENDIX II

&

L]

L3

-
S

L

Figure 1I-6 - Maximization Function Flocw Chart, [BM 7090 (Sheet 1)

28-

C— >

v TR NS ST D

APPENNIX I

NO

a>f _______7

NO

Figure II-6 - Maximization Function Flow Chart, IBM 7090 (Sheet 2)

-29.

APPENDIX

/=
(ouTPyT)

L-——J

£ J@ = hix

]

k =k+1
f YES
rRALT
NO

Figure 11-6 - Maximisation Function Flow Chart, IBM 7090 (Sheet 3)

.30 -

APPENDIX II

YES

emnip> ENO

Figure -7 - Lookup Function Flow Chart, IBM 7090

-31.

APPENDIX I1
TABLE II-1 - IBM 7090 EXECUTION TIME FOR
DYNAMIC PROGRAMMING PROBLEM
Machine cycles
Item Mini mum Maximum
Activity function 1, 056 1, 056
gl(x) 127 127
gz(x) 169 400
33(x) 1,723 3,130
8,(x) 1,369 1,831
gs(x) 313 544
ge(x) 154 212
Maximization 64, 398 95, 430
Lookup 176 - 176
Total machine cycles 69, 485 102, 906
Microseconds per
machine cycle 2.18 2.18
Total microseconds 151, 477 224, 335
Total seconds 0.151 0.224
TABLE II-2 - ACTIVITY FUNCTION CONTROL
PROGRAM, IBM 7090
TR
Mechine
Item Instruction Remarks cycles
INIT LXA 2 +SIX (T3) = & 2
INIT6 LXA TWONE (Tl)=ZlD 2
INIT2 CLA T4 (T4} = ¢ 2
INITS STC x {x) = Corx+a 2
TRA 2 ADD i :
SN , .
INIT CLa x x x + A 2
t ADD a T3 2
(“Ab ‘f“‘l)
I'RA INIT4 > i
THA INITS = 1
. IRA INITS i
INITS IIN_ 2,1 INITe 1212 2

- e e e

~32-

IR

\ *—Ju‘”

APPENDIX II

TABLE II-3 - MAXIMIZATION FUNCTICN PROGRAM, IBM 7090

*-——__—q——w
Machine
Item Instruction Remarks cycles
CLA ONE 2
STO k =] activity number 2
LXA 2 TWONE (12) = + 21 2
RET1 STZ 2 fk) 1(x) TAB 0—*£k . l(:x) table 2
TIX 2,1 RETI 2
RETY STZ x 0—>x resource 2
RET?2 CLA <o 7T 77 17 17 717 77 2
STO B 2
STZ Xy 2
RETS CLA Xy 2
DVH A x/a =i 3-14
STQ IND1 = i]
CLA x 2
DVH A x/A 3-14
XCA (AC) = x/A 1
SUB IND1 2
STO IND2 = j 2
LXA 2 IND1 (11) = k 2
LXA 4 IND2 {14) = 2
CLA 2 81 TAB 2
ADD 4 fk -1 TAB (AC) = a 2
CAS B 3
TRA RET3 > 1
TRA RET4 = 1
TRA RET4 < 1
RET3 STO B B) = a 2
CLA Xy 2
STO Y by = x, 2
RET4 CLA X 2 _

-32.

o\ e\ —

APPENDIX Ii

<45
H

TABLE II-3 - MAXIMIZATION FUNCTION PROGRAM, IBM 709C (Continued)

Machine

Item Instruction Remarks cycles
ADD A 2
STO Xy X, = x ¢+ 2
CAS x 3
TRA RETé6 > 1
TRA RETS = 1
TRA RETS < 1
RETé CLA B Best returns 2
STO 2 fk(x) TAB 2
CLA Y 2
STO 2 xk(x) TAB 2
CLA x 2
ADD 4 2
STO x X =x+4 2
CAS X ax 3
TRA ouT > 1
TRA RET2 = 1
TRA RET2 < 1

ouT "OUTPUT"

LXA 2 +TWONE =21 2
RET?7 CLA 2 fk(x) TAB 2
STA 2 fk . l(x) TAB 2
TIX 2,1 RET? 2
CLA k 2
ADD ONE 2
- CAS N 3
f TRA RETY > !
TRA RETS = 1
RETS STO k < 2
TRA RET9 1

{

APPENDIX II

TABLE II-4 - ACTIVITY FUNCTIONS PROGRAM, IBM 7090

W

Machine
Item Instruction Remarks cycles
g,(x) | cLa ® . 2
STO 1 GITAB x—>GI1TAB + (I1) 2
TIX I, 1 INIT3 2
TRA INIT3 1
gz(x) LDQ (x)) 2
FMP (x) x 2 -13
STO 1 GeTaB* x'—>G2TAB™ + (11) | 2
TIX 1,1 INIT3 Tl =11 -1 2
TRA INIT3 1
g3(x) SSp 3 2
TZE C9-1 2
STO COMMON 2
ANA C9 3
LRS 1 2 -7
ADD COMMON 2
LRS 1 2 -7
ADD Clo 2
LXA g3(x) 2
STO STO COMMON + 1 2
CLA COMMON 2
FDH COMMON + 1 3-13
STQ COMMON + 2 2
CLA COMMON + 2 2
FAD COMMON + 1 6 - 15
SuB ca 2
TiX 4,1 STO 2
TIX 1,1 INIT3 2
TRA INIT3 1

-35.

APPENDIX I

TABLE II1-4 - ACTIVITY FUNCTIONS PROGP.AM, IBM 7090 (Continued)

Machine
Item Instruction Remarks cycles
C9 - OCT 001 000 000 000
Cl0 CCT 100 400 000 000
SXA 1 TEM z
SXA 2 TEM + 1 2
g4(%) CLA x 2
B SUB 27 2
CAS 2n 3
TRA B > 1
TRA B = 1
STO R R < 27 2
CAS TT 3
TXI 1,1 E -, 11 =1 2
C TXI 1,1 E 2
CAS n/2 3
TRA D /R 1
TRA D /R 1
TRA SER R = R 1
E CAS n/2 3
TRA G > 1
TRA G = 1
F CLA R R-n 2
SUB n 2
H STO R R=R-1 2
= TRA SER i
| G CLA 2n 2
1 SUB R 2n - R A
ITRA H 1
. D CLA v 7-R 2

<36.

APPENDIX 11

TABLE 1I-4 - ACTIVITY FUNCTIONS PROGRAM, IBM 7090 (Continued)

Mach.ne

Item Instruction Remarks cycles
TRA I 1

SER LDQ 2/ 2
FMP R 2 -13
STO a 2
LDQ a 2
FMP a 2 -13
STO a2 az 2
LXA 3 2
LDQ Cl 2
FMP a2 2-13
TIX 2,1 DE 2

DE FAD 2 o 6 -15
STO TEM 2
LDQ TEM 2
TIX 2,0 DF 2
FMP a 2 -13
STO SIN (x') 2
TIX 1,0 SN FA
TRA SN + 2]

SN CLA -0 2
SBN SIN (x')]

SN + 2 LXA 1 TEM 2
LXA 2 TEM + | 1
STO 1 GATAB® 2
TIX 1,1 INIT3 3
TRA INIT3 |

gg(x) LDQ x r4
FMP TWO e -13

37.

APPENDIX I1

TABLE II-4 - ACTIVITY FUNCTIONS PROGRAM, IBM 7090 (Continued)

Machine

Item Instruction Remarks cycles
CAS TWO 3
TRA A2 > 1
TRA Al . 1
Al STO 1 G5TAB" < 2
TIX 1,1 INIT3 2
TRA INIT3 1
A2 STO TEM 2
CLA FOUR 2
SUB TEM 2
TRA Al 1
g4 (%) CLA x 2
CAS ONE 3
TRA Bl > 1
TRA B3 = 1
STZ 1 G6TAB" < 2
B4 TIX 1 INIT3 2
TRA INIT3 1
Bl CAS TWO 3

HLT >
TRA B2 . 1
B’ CLA TWO < :
BS STO 1 G6TAB" 2
TRA B4)
~ B2 CLA FOUR 2
: TRA BS 1
,
<38.
t.
» ok : :

APPENDIX 11

TABLE II-5 - LOOKUP FUNCTION PROGRAM, IBM 7090

Machine
Item Instruction Remarks cycles
CLA N 2
STO k Highest activity num- 2
ber
CLA x 2
STO x 2
LOK3 LXA k 2
CLA ADDRXk(x) 2
STA LOKI 2
LXA x 2
LOCK1 CLAa xk(x)TAB " 2
STO 0T AR Best allocation for k 2
activity
CLA k 2
SuUB 3
CAS ZERO 1
TRA LOK2 2 1
KRLT END = 2
HLT < 2
LOK2 STO k 2
CLA x l 2
s>UB 2 0Ty <
STO X i !
LOK
i

TRA

ot
%

APPENDIX U
TABLE II-6 - COMMON STORAGE
Item Data Remarks
T4 C
T3 A
T2 N
: Tl S S
+6 TRA gl(x)
+5 TRA gz(x)
+4 TRA g5(x)
+3 TRA g4(x)
+2 TRA (%)
+1 TRA g6(x)
ADDR
S'X
TWONE
ONE
k
-
R
*K
IND: |
IND2 |
ADDR x, (x) |
ADLCRESS xl(x)TAB
ADDRESS x,(x)TAB |
o ADDRESS x,4(x)TAB
ADDRESS x,(x)TAB
ADDRESS x4(x)TAB
ADDRESS x,(x)TAB
X0

© e e Bt s i e . : i B

APPENDIX II

TABLE II-6 - COMMON STORAGE (Continued) 1

Item Data Remarks

Y
ZERO

COMMON
COMMON + 1
COMMON + 2
COMMON + 3
C9

Clo

TEM

TEM +1

c? 400. 002310715
C5 000. 050632127
Cc3 400. 512567405
Cl 001. 444176646

-0. 00467377
0.07968968
-0. 64596371
1,57079630

e

2%
nf2

n/2
SINX'

o2
TNO
FOUR

000.

006.
004.
003.
001.

505746037

220773230
554574363
110325514
444176646

0,.6366198

6.2831853
4,.7123889
3, 1415927
1.5707963

-41-

RS, D

f-km

fk- A

l-’s(")

fTaAB

#gtx)

X (X
6()

N
&4(r

(ay

AY

(A

AU AN
4(l

IR

[URA N

Figure [1.8 - Table Layout, 13117090

B

pyrgin et
D L e

Tl AT

APPENDIX IIl - PROGRAMMING OF THE DYNAMIC PROGRAMMING

YL S

TECHNIQU:. FOR MACHINE I {PARALLEL)

INTRODUCTION

Described in this appendix is the sample problem that was programmed
for Machine] using the dynamic programming technique. The objectives
were to develop parallel solutions and programming techniques and to
determine what difficu'ties might arise in programming fcr Machine I,
Hence, the sample problem was kept small and no attempt was made to

extract maximum parallelism and speed.

The narratives and programs for the Machine I sample-problem prograun-
ming are detailed under Item 2; this description revolves around six ac-
tivity functions, a maximization function, and a lookup function. The
Machine I programming results are presented under Item 3. Under

Item 4, these resnlts are compared with those resulting from the pro-

gramming of the same problem for a sequential computer.

NARRATIVES AND PROGRAMS

a. Activity Function |

The flow chart for activity function 1, g,{x) = x, is shown in Figure lII.];

1
the program, 1n Table lli-1; and the data vector formai, in Table llI.2.

This function s started by storing an ENBl 2 . JMP Gl instruction in

X
the WAIT LISY. A free processur takes this instruction, enters 8, into
index register |, and jumps to Gl. which 1a the address of the {irst in-

struciion ot the gl(x) activity function,

Index register 2 1s nutiatized with zero, and index register 3 is loaded

¢

with n, which .8 the number 0! tunes gi(x) is to be calculated. The

P ol

o AT

-43-

APFENDIX 1iJ

-

\V

INITIALIZE
Q.Ln

P e

xvg +i+3

IZX*A

ur 0.]*u‘ MA X

Figure llI.1 - Activity Function | Fic

-44.

art, Machine !

© ey MR tcmtery Azt Oy

APPENDIX 11

TABLE 11.1 - ACTIVITY FUNCTION 1| PROGRAM,

MACHINE 1
=m-wm
Item Instruction Remarks (usec)
ENBI1 g) 30
JMP Gl
Gl ENB2 ¢ 30
LDB3 1 2 n
1.DA 1 ¢ 30
NOP
Gl +2 STA 1 2 3 30
ADD 1 i
LRS 72 30
LDA GIM
INAL 2 3 30
STA 2 MTEM
LDA GIM + 1| LDI__, JMP MAX| 30
BGN 2 MTEM
LLS 72 30
ISKS 1 ¢
JMP Gl +2 30
HLT
GIM u 0
GIM + 10 J
LDI
JMP MAX

-45.

&
‘::5!
a4
L
¥
s

P i R A ot s i 4

APPENDIX II1

TABLE I11-2 - ACTIVITY FUNCTIONS 1| AND 2 DATA VECTOR

FORMATS, MACHINE 1

Function gl(x) Function gz(x';

Addrees Data Address Data Address Data
8 x g X §; * 24 TEMP x
g +! A gz‘+ ! a g, + 25 TEMP x + 16
gl+2 n g, +2 r g, + 26 TEMP x + 24
g +3 xq g, + 3 Xy’ g, + 27 TEMP x + 34
g+ 4 X g * 4 xlz g, + 28 TEMP x + 44
g + 5 X5 gt 5 xzz g, *29 TEMP x + 54
g * 6 X4 g * 6 x_;2 g, + 30 TEMP x + 6A
gl+7 X4 g+ 7 x42 g2+3l TEMP x + 74
g, +8 X g, + 8 x5 g, + 32 TEMP x + 84
g +9 x4 g, + 9 xg? g, + 33 TEMP x + 94
g, + 10 x4 g, + 10 x,° g, + 34 TEMP x + 104
8 ¢ 11 Xg gt 11 xBZ g * 35 TEMP x + 114
g+ 12 Xy 8, 12 xqz g * 3¢ TEMPF x + 124
g + 13 - g, + 13 %o g, + 37 TEMP x + 134
g, + 14 x| g, + 14 %, g, + 38 TEMP x + 144
g + 15 x|5 g, + 15 x;,° g, 39 TEMP x + 154
g, + 16 X3 g, + 16 x5 g, + 40 TEMP x + 164
g + 17 %\ g + 17 x|, gy + 41 TEMP x + 174
%, ¢ 18 x5 g + 18 x5 g, + 42 TEMP x + 184
g+ 19 x4 g, t 19 x,, 4y + 43 TEMP x + 194
g + 20 %17 5, + 20 x, . gt TEMP x + 204
i + 21 X4 gz*Zl xlBZ
R+ 22 X1 g, + 22 xlgz
8 23 Xa0 Ky 23 "202

~-46.

e R
CEeE Sh

o e e

APPENDIX Iil

it R

2
&
T

contents of the first location of the g, vector, which is x, is then stored
in the third word of the vector. Here x is the initial value of the vector
from which all subsequent values of the activity function are calculated;
it is increased by A, then shifted into Q, and a series of instructions is :
executed to enable the starting of processors to operate on the maximi-

zation routine.

The maximization routine needs the beginning address of the vector and
the value of the resource for which activity function returns are currently
availabie. For every returrn calculated for the gl(x) activity function, a
processor is started. The information transierred to this processor is

a,, o, and j.

1
Inserted into the address field of the instruction at GIM +] ‘s the loca-
tion where the contents of the index registers are stored. The instruc-
tion is then stored in the WAIT LIST for an available processor. The con-
tents of Q are now shifted back into A, Index 2 is tested to determine if
all iterations have been completed. It rnot completed, inde2x 2 is incre-
mented, and the loop is repeated. When index 2 equals 21, the operation
is halted,

Successive values of the function are stored in successive locations of the :

vecter., Each location has a unique name as determined by Bl + B2 + 3; 5

Bl equals gy B2 is incremented by 1 {or eacn iteration. Successive

names of elements of the vector are g, + 0+ 3, 8 + 14 3, g + 2+

34, ., ..

b. Activity Function 2

-

The flow chart for the gZ(V.) = xz activity function is shown in Figure I11-2;

the program in Table Iil-3, and the data vector format, in Table 11I-2

along with the gl(x) format, “.

This function is started in the same manner as activity {unction gl(x).

When there is an available proce,ser and the JIMP Gl is executed, zero is

[A,

T A R T ST - ktan i
e ’my X zﬁ R 4

APPENDIX 111

t‘&’fi‘ ;

INITIALIZE
Kz').7!‘

DURE

R R

2 .
3 'll‘v; 3

NO {
(L

YES

e ke -

* Figure 81.2 « Act.vity Funition 2 Flow Chart, Machine !

.’5&"

w-ucn“ ‘&WW“WT - v - » °

APPENDIX 111

TABLF I1i-3 - ACTIVITY FUNCTION 2 PROGRAM, ;
MACHINE 1

Item Instruction Remarks ‘ Time {usec)
ENBI g, 30
JMP G2

G2 ENB2 g 30
LDB3 1 2 n
LDA 1 g 30
NOP

G2B {STA 1 2 3 3 60
FMP 1 2 3 3
STA 1 2 3 30

i SEH 1 2 3 3

LDA 1 2 3 3 30
FAD 1 1
NOP 30
iSK2 3 4
IMP G2B 30
HLT

entered into index 2, and Bl + 2 = n is entered into index 3. The initial
value of the data vector, x, is stored temporarily in an addreas equal to
Bl + B2 + B3 + 3. On the first execution of the riutine, this address is
equal to 8+ 0+n+ 3 Insubsequent executiors. B2 is incremented up
to a maximum of n = B3, Hence, for each execution therz is a unique
temporary storage address where X, is stored price to forming ,‘iz‘
Then x. =~ is stored in the data vector at the address equal to Bl ¢+ B2 + 3,
Now x, is erased, and this location Lecomes an avatiable word of memory
capable of being named and uses by anothar routine. This routine is re.

peated n times untis all valves of the activity funstion have been calculated.

Activity functions gl(x) and gz{x) are quite simple. Lxcepl for the method

of starting the processors, they could be run on a su:ential machine,

-&9.

APPENDIX 111

c. Activity Function 3

The flow chart for the gg(x) = v/X activity function is shown in Figure III.3;
the program, in Table III-4; and the data vector format in Table III-.5,

This function is started by transferring indices 83 2, and 0 to an avail-
able processor and jumping to the subprogram, INIT. Indices -2y 2,
and 0 are in the 81 table, and the 1.D1 81, JMP I instruction is stored in
the WAIT LIST to start.an available processor.

The term, 1, designates index values that are used as inputs to the I
subprogram; and 32 designate index values used as inputs to the LOOP

and Q suoprograms. Each time one of these indices is stored, an instruc-
.tion is also stored in the WAIT LIST. This instruction has the pertinent 8
and subprogram address to enable the processor to acquire the index
values and to jump to the appropriate subprogram. Since the index trans-
fer operation is complete at the time of the jump tc the subprogram, and
since the index value in the 3 table is no longer of use, this information

is erased from the 3 table,

Three more processors are started with indices g3 0, and 0; gy 1, 0,
gy 2, 0. These indices are stored in 32 and are used to start the sub-
program LOOP. Each time a processor is started on LOOP, another

. one is started on subprogram Q.

The 8y 2, and 0 indices sent to the | program were tue beginning of a

tree of indices generated to permit paralle! calculation of the square roots,
With an index of i = 2 as input to the I program, 2i and 2i - | are gencr-
ated and used as inputs to the [program and to the LOOP proygram; 2i and
21 - | in turn generate 41, 4i - !, 4t - 2, and 41 - 3. Eventually, a calcu.

lated index exceeds the vector size and index calculation halts,

The LOOP subprogram calculates the square root using Newton's itera-
tion. The Q program determines whether the exponent is even or odd, to

determine the exponent ¢t the square root.

In addition to the data vector generated by the program. three other

-56-.

3
me" e ——— — WW~
nsc*‘ Lo ey

B2,

s e

APPYL

TA -

B = 8,20

2i =1

]
1= '2'

e
1TNC

NC

—
P+

% . ’ . T A R R R R . LTI ity vioe e s s e

APPENDIX 1lI

ﬁ;: Qrﬁ'o

3'1’0 START
N = x+iA F 6,10

/(-+_=v; 9:-1 -f-i—-: N
g +1 :J-K-s-ur;‘) i 2 +ﬁ v

l r
VN =g +L+a

si*g,+i0fl

«Sam——

HALT

Figure 111.3 . Activity Function 3 Flow Chart, Machine]

~-51-

I P st AR Tt Uy T T T

APPENDIX IlI

TABLE Il1-4 « ACTIVITY FUNCTION 3 PROGRAM,

MACHINE 1
Item Instruction Remarks Time (usec)
LDI Bl 30
IMP INIT
Bl
INIT LDA Ll Bl, B2, B3 30
BGN 81 83 2, 0
ENB2 g 30
ENB4 2
INIT 1 | ST! B2 30
LDA LB2
BGN g2 30
INB2 1
BJP4 INIT 1 30
HLT
LDI Bl 30
IMP 1
Bl
Bl, B2, B3
8y 2, 0
: SEH B: 30
LDI g1
INB2 2 -l i= 201 30
ENA 2 ¢4
COM | 2 2i - I:n 30
HLT 2
STI ! $ 30
1.DA L3t
BGN B! Al 30
sT1I B2 Bl, B2, B3

-53.

APPENDIX 11

TABLE llI-4 - ACTIVITY FUNCTION 3 FROGRAM,

MACHINE 1 (Continued)

Item Instruction Remarks Time (usec)
% LDA LB2 gy 2i-1, 0 30
3 BGN g2

! ENA = 2i
U g COM 1 2 2i:n

HLT 2 30

STI 81 <

LDA L3l Bl 30

; BGN 81 Bl, B2, B3
3 STI g2 gy 2i, 0 30

LDA Lg2
BGN g2 30
HLT
LAl LDI
IMP I
Lg2 LDI C.
JMP LOOP
LDI g2 39
IMP LOOP
32
Bl, B2, B3
33, 0, 0
LOOP | SEH g2 gy 1. 0 30
= LDI 32 gy 2. 0
‘ STI A2 gy b 0 30
LDA L33
&
. -54.

R

APPENDIX II1

TABLE 111-4 - ACTIVITY FUNCTION 3 PROGRAM,

MACHINE I (Continued)

Item Instruction rcernarks Time {(usec)
BGN B3 30
ENA 2 4
FMP 1 | iA 60
FAD 1
STA 12 T2 ni 30
AND f MASK
STA 12 T3 £ 30
ARS 1
ADD 1/2 30
STA 12 Tl
ENB4 2 30
NOD

LOOP1|LDA 12 T3 60
FDV 12 Tl g
SEH 12 Ti 60
FAD 12 Ti
FDV 2 60
STA 12Tl
BJP4 LOOP 1{ 30
HLT

L3 o) c s 30
JMP Q
LDl 83 30
IMP Q

Q SEH 83 30
Lbl 83
LDA 12 T2 30
AND QIMSK | Exponent Bit |

-85,

WL PP PSR .

!’ Nerainh

»” ‘1 ,-zmw m . et N -

APPENDIX III

TABLE IlI-4 - ~TTIVITY FUNCTION 3 PROGRAM,

MACHINE 1 (Continued)

Item Instruction Remarks Time (usec)
INZA QA Ql # 0 30
LDA 12 12 Ql £ 0
AND QMSK | Exponent 30
NOP
QB ARS 1 30
ADD 1 2 T] Fraction
sTA 122 JN 30
HLT
: LDA 12 T2 30
AND QMSK
ADD QI 30
JMP QB

temporary vectors. Tl, T2, and T3, are generated to hold {1) the initial
calculated guess of the square root, (2) the number itsclf, and (3) the frac-

tional part of the number.

Temporary storage appears to be sizeable. The temporary addresses are
actually reserved addresses not necessarily occupied. Only a portion of
this block would be filled at any one time, since processors operating on
the pregram are continually started and stopped as data are entered, used,
and erased. The addresses when occupied are not available for use by

other processors. However, when the data is erased the location is then
free.

In a conventional memory, temporary atorage is defined 48 a certain biock
of words occupied at a certain time. Thias area cannot be used otherwise

to store instructions or data.

“‘l

‘56-

&- M T RETL
h ST S P [So—— __'*"-
8 - = - -

- -

Lo gl 4 o rteihawRe - B PR 0 S P

APPENDIX 111

TABLE 1lI.5 - ACTIVITY FUNCTION 3 DATA VECTOR

FORMAT, MACHINE 1

Function gs(x) Temporary vectors

Address Data Tl T2 T3

83 x &

8, +1 a 3

g3 * 2 n

g3 +3 EN 89 No f

g3 + ¢ vEN 8 Ny h

83+ 5 v g, N L

g3+ 6 Vx5 83 Ny &

g3 +7 en 84 Ny &

83 + 8 ﬁ; g5 N5 fs

8349 V%6 86 N, g

CP 10 X< 87 N., (7

g3 + 11 Vg By Ng fa

83+ 12 ff; 89 N9 f9

g3+ 13 V1o R0 Nio fi0

83 + 14 e &1 N.y 3y

b3t 15 V2 g2 Ni2 f12

K3+ 16 EITY B3 Nis fis

gy + 17 14 B4 Nia Y4

gy v 18 s fys Nis fis

g3 ¢ 19 V¥ie R16 Nip TS

g, ¢ 20 v By7 N7 tye

8y * cl Vs T N 18

By * &l V¥ LT Nig fl9

gy 2 VATYS ¥20 Nio 20 i

®

.57,

b o e """‘}

APPENDIX 111

In the Machine I memory a portion of ecach word is used to denote the
name or address of the word, Any word can have any name that is repre.
sentabie in the 24 hits of the name field. In addition, any unnamed word
is available for use by any program at any time.

It is possible through indiscriminate naming to have commen names in 2

number of programs, which situation may be undesirable, Hence, where
a large number of programs are running, a portion of the name field, the
prefix, should be used to isolate names to a particular program. Such a

prefix name is unique to a particular program. The original name plus

W

the prefix constitute a unique name for the individual program.

During the study, the unique prefix names were carried in index register 1.
The other indices and address fields of the instructions were used to gen-

erate the suffix namsas.

d. Activity Function &

ks
&
%

The flow chart for the g,(x) = 2 sin x activity function is shown in Fig-
ure !1I-4; the program, in Table 1li-6; and the data vector format, in Ta-
ble 1II-7.

This function is composed of six subprogram-- HSIN, SER, SIN (i + j)a,
b
COS (i + j)A, SIN(x + jA)and COS{x + j&). HSIN computes @ and a fcr
e A 0
the input, x, and also § and§ for the input, 4; a. a, §. and§ are inputs

to SER for the calcuiation ¢f sin x, cos x. sin & and ¢cos A,

Sin 22 and cos 24 are calculated. and 3 tree 15 started to generate in-
dices that permit calculation of sin 1d, cos 1A, sin{+ - 1)d, and cos
fi « 1)A for1 > 2. tPor each incremental angie the sin x + 13 and cos x +

14 are computed and stored o the output data vector,

A To start the SIN routine, index By 0. 0 and index gy I, 5 € are trans-
ferred to twu avaiiable processors, These units execute the HSIN subpro.
gram, ane working with v and the vther working with A, After a. a‘a. s
and 8‘& are calvulated, tour processors are started, each excouting the

‘3 SER subpr The aulputs are sn x, cos X, 818 D and con &, The

APPENDIX 1II

STARY
£, 0.0 ;

8‘+‘.5,0

8, 3. Sa
8.8 Ca
By 9 sA
8, 2. cA

SiNx = cs(g)¢

- - cs(§} + cs(g) +

¥,. 1.1
e -

Y

cv(g) + cs(g}

r—~

\ *
cos x = c:(g‘)¢

beeee ol o)

o)+ dZ)

!

HALT

8 b

R e i |

siM i+ A =
s$INiACOS A+

cosiAsin g\

costi+jtA=
cosiNcosjA-
siN iA SIN A

SINx i) -
SINVCOS
CO% x 3N A

cos v+ j\ =
cosscos)\
SN L BINGG Y

Y

Figure Il 4 - Activity Function 4 Fiow Chart, Machine |

-59.

R g T I R P TR T o

& it

R

e R e

APPENDIX 111

TABLE 111-6--ACTIVITY FUNCTION 4 PROGRAM, MACHINE I

Item Instruction Remarks Time {psec)
LDI P 4 30
JIMP HSIN Bl, B2, B3
8y 0, 0
: 84,1 5 0

HSIN SEH P 30
LDI 4
IDA 1 d xor A 30
NOP

HS F8U 2% 60
NOP
CoOM 3 | 30
JMP HS
STA 1 2 3 Rorr 30
NHA ¥
ARS 1 Yy A 30
§sTQ 1 2 5 % gin x, * sin &
LRS 1 30
STQ ' 2 8 cos X, * cos &

HS2 SEH 1 2 3 30
LDA 1 2 3 Rorr
FMP 2/e 60
STA 1 2 3 aor &
LAC 1 2 3 30
STA 1 2 6 o or 8
BJP2 HLT 30
NOP

HSI ENB4 3 30
NOP B output

e S

T e -

Pt B

A S - o

APPENDIX 111

TABLE 111.6 - ACTIVITY FUNCTION ¢ PROCRAM, MACHINE 1 {Continusd)

bl

S R > W AR L S N

Item Instruction Remarkes Time {(avec)

HS3 LDl k Bl, BZ, B3 30
STI B k, 84 3. Sa
LDA L +l, gy 6, Ca 30
BGN g +2, 84 9 SA
BJP4 HS3 "f3. 84 12, CA 30
HLT

"L LDI “ .
JMP SER

Y n

Y 3n/2 +o

Y L -4

Y u/2 ++

2w

x/2
LDI B 30
IMP SER B

Bl. B2, B3
8¢ 1, §

SER SEH B 8 $, C 30
LDI 8 B8y 9. S
LDA g By 2. C 60
FMP $ |
STA 1 &)
FMP <9
FAD c? 60
FMP 2 l
FAD Ccs 60
FMP 2 1

R A R e

AL ST ARSI A 57 gl

AR,

W i et M Sl ST
2 Atiah o dbege 5 ot i -
* B

APPENDIX 11

TABLE IlI-6 - ACTIVITY FUNCTION 4 PROGRAM, MACHINE 1 (Contjnued)

item Instruction Remarks Time (usec)
FAD C3 60
FMP 2 1
FAD Cl 60
FMP 2 g
STA g 30
LDA 2 2
AND SMSK 30
SEH 34
OR 34 30
STA 3 g * gin x, cos X,
sin 4, cos A

INB2 -i2 30
BJP2 SER1
HLT 3
NOP

SER} ENB2 1 START SIN (i + j)a ‘ 30
ENR3 1 COS (i +))Aa
STI m 30
STl n
LDA N 30
BGN m

SER2 LDA Sa 30
NP2 SER2
SEH Ser 39
FAD Sa
STA] 30
NOP

SER) LDA Ca 30
NPJ SER3

-£2.

APPENDIX II1

TABLE 1l1-6 -~ ACTIVITY FUNCTION 4 PROGRAM, MACHINE I (Continued)

Item Instruction Remarks Time (psec)

SEH Ca 30
FAD Ca
STA Ca 30 v—
LDA N+1
BGN n 30
ENB2 ¢
STI g 30
LDA P START
BGN g SIN (x + j&), j =1 30
STI h COS(x+ja), j = 1]
LDA P+1 30
BGN h
HLT 30
NOP

N LDI ¢ e
JMP SIN (i +))&

N+1 1.D1 N
JMP COS (i + jlo
LDl m 30
JMP SIN (i + j)a

SIN{i + j)A | SEH m 30
ADD m Bl, B2, B3

SijA LDA 1 2 8& 8y b J 30
NpJ SijA

SijB FMP 1 3 Ca 60
NPJ SijB
STA 1 2 3 8SAT (i + JJTEMP 30
NOP

§ijC 1.DA | 3 sa 30

-

O Th By b s (e

Ry

ERREAY,

s e

APPENDIX 111

TABLE II1-6 - AC1IVITY FUNCTION 4 PROGRAM, MACHINE I {Continued)

Item Instruction Remarks Time {usec)

NPJ SijC

SijD FMP 2 ca 60
NPJ SiiD
SEH 2 3 SAT 30
ADD 2 37sAT
STA 2 38A 30
INB3 2 g
STI g g or table 30
LDA P
BGN g B1, B2, B3 30
ST} L 24 0.
LDA P+ 30
BGN h
HLT 30
NOP

P 1LDl1 e g
JMP SIN (x + jA)

P+l LDl1 . .. h
JMP COS (x + j&)
LDI n 30
JMP COS (i + jlb

Bl, B2, B3
8y i §

COS (i + jJo |SEH 30
ALD n
LDA 2 sa SIN ia 30
NPJ
FMP 3 sa SIN ja 60
NPJ

-64-

APPENDIX 111

TABLE 11.6 - ACTIVITY FUNCTION 4 PROGRAM, MACHINE I (Continued)

Item Instruction Remarks Time (nsec)
STA 1 2 3 CAT (i + j)TEMP 30
1IDA 1 2 ca
NPJ 60
FMP 1 3 Ca
NPJ 30
SEH 1 2 3 CAT
SUB 1 2 3 CAT 30
STA 1 2 Ca
INB3 Z 'S i+ 30
ENB2 3 -1 it+j-1
LAC 1 2 -n 30
INA 2 34
JNGA CA 30
JNZA HLT

CA ST! e 30
I.DA M
BGN e LDI __, JMP, SijA 30
ST! f
LDA m+ 1 30
BGN £ b1, JMP, Cija
INB2 } 30
LAC 1} 2 -n
INA 2 34 30
JNGA cB
IJNZA 30
NGP

cB STI e 33
LA M LDI__ . IMP Sija
RGN e 30

T A = RN resamma——

-b5.

p

3
%

APPENDIX 111

TABLE 111.6 - ACTIVITY FUNCTION 4 PROGRAM, MACHINE I (Continued)

Item Instruction Remarks Time (psec)
STI1 f
LDA m + 1 30
BGN £ LDI__, JMP CijA
ALT 30
NOP
LDi g
IMP SIN x + jA
SIN (x + j&) | SEH g Bl, B2, B3 30
ADD g By 0.)
LDA Sa 30
FMP 1 3 ca COs ja
NPJ 30
STA 1 3 SaT
LDA Ca 60
FMP 1 3 sa
SEH 1 3 saT 30
ADD | 3 SaT
STA 1 3 Sa SIN x + jA 30
LDA GAM
INAL 13 30
STA 3 mtem]
LDA GIM + START u, MAX 30
BGN ? mteml
'* HLT 30
1 NOP
G4m u, 0
0
¢ DI h 30

-66-

APPENDIX 111

TABLE 11I.6 - ACTIVITY FUNCTION 4 PROGRAM, MACHINE I (Continued)

Item Instruction I Rernarks Time (nsec)

JMP COS (x +ja) 30

COS (x + jO)| SEH h 30
ADD h
LDA Sa 60
FMP | 3 sA sin jA
STA 1 3 saT 30
LD Ca
FMP 1 3 Cao cos jA 60
NPJ
SEH 1 3 SaT 30
SUB 1 3 SaT
STA 1 3 Ca COS (x + j4) 30
HLT

indices transferred to the SER processors are 84 3, Sa; 84 6, Ca; gy’ 9,
S4; and g, 12, C4; g4 is the prefix name; 3, 6, 9, and 12 are data vector
addresses, relative to g,, of the input variables a, a 8 and 8"; sa, Ca,

S4, and CA are initial addresses of the output data vectors.

The SER subprogram generates one set of indices to start the SIN (i + j)&
and COS (i + j)A subprograms and also generates one index set to start the
calculation of sin x + & and cos x + &, The index set that starta the SIN

(i +)& and COS (i +))& subprograms is used to generate the tree of in-
dices that are, in turn, inputs to the SIN (i + j})4&, COS (i + j)A, SIN (x +
j4d), and COS (x + jO) subprograms.

The indices transferred to the processor executing the HSIN subprogram
are erased, and x or A is then normalized mod 2%, The normalized
quantity is next compared to the four quadrant angles, each of which has
stored in its lower two bits the correct signs of sines and cosines of angles

)
w0}

.67-

=
%
[
2
(0]
>
o,
<

12 | Is | 1 [vozeo>|oz + vD|voz uis| 0z + vS|v0zZ + P 903|v0z + PD|v 52 + DUIs] 02 + BB
12 | IS | 1 |vétr soale1 + vo|wer wis] 61 + vs|vel + P sod|ver + Do|wer + B zIaf 61 + DB
10 | a5 | I |vet eoolgt + vD|vst vis| 81 + vs|ver + D eodluar + 2O|vel + DuIs| g1 + B8
10 | 15| 1 |versoo|st + vD|wst ute| 21 + ws|vLT + D sod|vst + D|vLt + Dwme| 11 4 B8
1| 1s | L |vet sod|9t + vo|vgr uie|9r + vs|vet + » sos|v91 + POjvel + DuIsligr + B8
10| as | 1 [vstsoo|st + D [vwst ms|g1 + vs|vst + D s0d)wst + Po|vUst + Durs| 51 + V8
10 | 25| 1 |vvtsoo|st + vD (Ut uis |yt + US| Url + D wod|ust + BOlUvT + Dwis |1 s 08| NOB] w1+ B
12| 1s | & |verscofer + vofvet wsfer + vs|vet + D sos|uct + o|vst s ws|c1 o o[Lol €D
10 | 18| 1 |vausos|zt + vd{vet w21 + vs|vzl + D sodfuzt + DO|wzt +Dwe |24 mg| el 21+’
12| as| 1 |virsos|tt +vo|vitwislit + vsjwrt + D sos|wir + PO|vit + e | b1 + | NOIS] ii ¢ VS
1D | 1s | 1 |vot soa)o1 + vD|wor uis{o1 + vs|wol + ® sod|yor + PO{volI+ Dms |0y + b5 glors?s
10| as| 1 | vesos| 6+vd| veure| 6+ 95| ve+@e0d| v6+ 00| ve+DuUs]| 6408 o| 6+
10| 1s| 1 | vesos| g+ vD| vaurs! g4+ us| ve+Dsod| vg+ oo vg+ous| gavs| NOIB| 8478
ID | IS | L [veeoa|2+9D]| weus| L4vs! vi+Dsos| vr 0D v owme| Lans] L P| 24+79
10|15 | 1L [v9soo|9+vd| vome| g+ vus| vg+2s0d] w9+ 0D vo+Dus| 9gems| B} 948
I 1 18 1L vs €02 .m+<0 vsuit] ¢ + US| VS + D eod] s + D) Vs +Duie! g ¢ 5| NDIS mtv-
10| 1s| L [Vrsos|y+90| vrue| y+us| ve+Deor| vy s oD vreDue| pads| 0| 2+’
ID [IS | 1 | VE®0d| €49D| vewe| g+ US| vg+Dsod] g+ 0| Ve +Duls| ¢ 4 0B £+ 79
1D | 1s] L |vzeosr|z+vd| vzwe| 2+ vs| vz+ow0s]| vz+ 00l vz+ouws| 2408 ul z+%s
10| 18| 1 | veos|1+vud| vus| 1198| v+Dsoo 4:&4.:.3. 1428 v| 1478
2! 1s| 1 .- vol| - . vs D 80> D uye o5 x v
€L | 2L 11 neqg |[see Qe |sseappy neqg esoipPpY eqg 898IppV] wiwg [eseippV
SX0390A

Xzwaodwoy

(x)*3 uoproumg

‘68.

e e o

APPENDIX 111

within that quadrant. The NHA y instruction obtains the smallest quadrant
angle larger than the argument in the uccumulator and replaces the con-
tents of the accumulator. The sign bits are shifted into Q and stored.

Now a’.l and 8,.I are computed, and the indices to be transferred to ths SER
program are stored prior to starting the iour SER processing units. The
SER progriam computes sin x, cos x, ein &, and cos A from inputs a, d‘.
§, and 8"I using the Hastings Sine series., The processing unit that com-
putes cos A generates indices and starts instructions for the processors
to begin executing the SIN (i + j)4, COS (i + j)&, SIN (x + jA), and COS

(x + jA) subprograms.

The SIN /i + j)A subprogram gets its input indices from a temporary table,
after which the indices are erased. The product sin i, cos jA is found
and added to sin jA cos iQ and stored. Nonpresence jump instructions
are used to be certain that the words fetched from memory are the exact
ones requested. The SIN (i + j)A subprogram also generates indices,
which are transferred to processors assigned to the SIN (x + jA) and COS
(x + jA) subprogramas.

The COS (i + j)A subprogram gets its index inputs from a temporary table
in a similar manner to the SIN (i + jA) subprogram. While the computa-
tion is similar to that for the SIN (i + jA) subprogram, the COS {i + jA)
program generates indices that are used by the SIN (i + j)A and COS

(i + j)A subprograms to generate mor: branches of the tree x + jA. For
each i, j input, 2 sets of indices are generated: j = i+j, i = j-1and
j=i+j, 1 =j. Hence fori = 1, the inputs are j = | and the output sets
arei =1, j=2andi 22, j =2, These in turn generatei = 2, j = 3,
i=3 j=z3andi=3j=4,1i=4,)=4,

For each set of indices sent to the SIN (i + j)A subprogram, the sum j =
i+ jis sent to the SIN (x + jA) and COS (x ¢+ j&) subprograme. For each
additional SIN (x + j&) subprogram generated, there is a processing unit
assigned to the uy maximisation program,

-69.

e og , o e—

e »,;,z

N

©
&
o
E
i
S
%
i
P

%

APPENDIX III

e. Activity Function 5

The flow chart for the gs(x) activity function is shown in Figure ;11-5; the
program, in Table 11I.8; and the data vector format, in Table IlI-9. The
returns calculated from this function are

2xif 0 $ x § 1
85(x) =
4-.2xifl $x%
The gs(x) function is executed by transferring the address of the 8g data
vector to a processing unit and jumping to G5. Index registers 2 and 3
are initialized with 0 and n; x is obtained fromthe data vector and stored
in (1) a temporary word at the end of the data vector and (2) the first

word of the output portion of the data vector.

The itrrative portion of the program begins by fetching and erasing the
temporary word = x, adding A to it, and storing x + A back in the tem-

porary iocation. The incremented value in A is now doubled and tested.
10 $ X8 1, then the doubled value is stored in the data vec. or at the
address Bl + B2 + 4. If1 $ X $ 2, then 4 - 2x is stored,

Index 2 is now compared to index 3. Index 2 carries the current itera-
tion number, while index 3 carries the maximum number of iterations

to be performed. If the maximum has not been exceeded, the program
is repecated with index 2 incremented, if the maximum has been reached,

the processing unit halts,

f. Activity Function ©

The flow chart for activity function g(-,(x) = 2(x) is shown in Figure [Il.6;
the program, in Table 1lI-10: and the data vector format, in Table lI1-9,
along with the gs(x) {format,

This function is started by transferring the address of the ¥ data vector
to a processing unit aud jumping to Gé; x is obtained irom the first word
of the vector and stored in a temporary location. if x is lews than !},

zero is stored in the data verior; if x is equal to or greater than | but

-70-

- B . R . - - w— .
Came o - - WNEE TR T T VE R g
- h wad

APPENDIX ILI

INITIALIZE
i n
Bs. }

[

xs g +0+3
S

!

x-0gs+3

) T

lfA-—-gs*nq.a

— |

4~ 2x~ +ita
!s j

jorjet
L
;v
Figure IlI-5 ~ Activity Function 5 Flow Chart, Machire 1 ¥

.7‘ -

-APPENDIX Il1

Al S g 07 e

TABLE IIl.8 - ACTIVITY FUNCTION 5 PROGRAM, MACHINE 1

w

Item Instruction Remarks Time {usec)
ENBI1 8s 30
IJNP G5

GS ENB2 g 30
LDB3 i 2
LDA 1 g 30
STA 1 3 3
STA 1 3 30
NOP

G5B SEH 1 3 30
LDA 1 3
ADD 1 1 30
STA 1 3 3
ALS 1 30
INA -2
INGA GSA H 30
INZA G5A =
INA 2 z 30
STA 1 3 4
ENA 4 30
SEH 1 3 4
SUB 1 4 30
STA 1 2 3 4

GsSC 18K2 3 8 30
INP GSB
HLT 30
NOP

GSA | INA 2 30
STA 1 2 4
IMP GSC 30
NOP

-12.

" ——— o

O I o s A o .

APPENDIX Il

TABLE 1.9 - ACTIVITY FUNCTIONS 5 AND 6 §
DATA VECTOR FORMATS, MACHINE 1 !
1
Function 35(:;) Function ‘6(")
Addreus Data Address Data
‘.5 x 5 x .
gy + 1 gt} a
8 * 2 a 6t 2 n
8g*3 xq 8t 3 Xy
8+ 4 x; 8t 4 x,
8t 53 x, (TRE x,
8 * b xy 8t O x4
T 7 A 8 * 1 X,
TR ng &+ xg
8 +9 *6 st *6
8 + 10 xy 8 * 10 Xy
8t 1} xq g + 11 xg
8¢ 12 X gt 12 xy
gg + 13 X0 (PR L 1)
8¢ 14 0 g * M4 %
6y ¢ 13 X1y PR RL %5
By * 16 Xy g * 16 X)y
8 * 17 LIV ‘6”' LIYY
8g ¢ 18 LI g, * 18 s
8 19 LYY 8 19 LIy
8y * 20 X1y 8% + 20 Xy 4
8 ¢ &1 X0 R Y LITY
P 21 %4 8 * a2 LIT T
By v B *20 g * 33 %20 ;
gy ¢ 24 TEMP g * 3¢ TIMp ;
8 o 29 TEMP - | 0, * TEMPe1 owm

«-13.

R
3

-
M

APPENDIX III

INITIALIZE
j,
86. i

I

7

l“il*»‘\

1

x-ags+n+3

SR, Hi4
Crg tity

2*;5+j&3

u_ 0, jru A
3 } 3

LAY

4~ +j+
8, t1*3

R A TR PCEPE AN

Figure ll-e - Activity Function 6 Flow Chart, Machine |

-T4.

R St

APPENDIX 111

TABLE 111-10 - ACTIVITY FUNCTION 6 PROGRAM, MACHINE 1

Item Instruction Reinarks Time {usec) % ‘
ENBI1 8 30 |
IMP Géb :
Gé ENB2 g 30
LDB3 i 2 n
LbA 1 g 30
JMP G6E
GéD | LDA 1 3 3 30
ADD 1 1
G6E | STA 1 3 3 30
COM 1
IMP G6A 30
LDA £
G6B | STA 1 2 3 30
LDs G6M
INAL 2 3 30
STA 2 MTEM2
LDA GIM + 1 LDI__, JMP MAX 30
BGN MTEM + 2
ISK?2 3 ¢ 30
IMP Gé6D
HLT 36
NOF
GbA | COM 2 30
IMP GtC
ENA 2 30 :
IMP G6B
G6C | ENA 4 1 30 s
IMP G6B
vy 0
0 i

~15.

APPENDIX 111

leas than 2, then 2 is stored in the data vector; and if x is equal to or
greater than 2, then 4 is stored in the vector,

For each value stored in the data vector, a processor is started on the u,
maximization program. The resource for which the value of the activity
function has just been calculated is transferred to the uy maximization

program. This enables u, to begin the maximization process to deter-
mine what allocation of this resource will result in the maximum return,

g Maximization Function

The flow chart for the maximization function is shown in Figure I11-7;
the program, in Table IlI.11; and the data vector format, in Table ilI-12,

The maximization routine is started by storing an LDI___, JMP MAX in.
% struction in the jump tabie. The address of the LDI instruction is the
address where the indicez to be transferred are stored. These addrecses -
namely, MTEM + B3, MTEM | + B3, MTEM + B3, MTEM 3 + B3, and .
MTEM 4 + B3 - contain, respectively, the indices for execution of the
maximization for function Ups Uy, g, U, and ug. Index register 1 is used
to hoid address Ujs Uy, Uy, U, OF ug; index register 2 is initially zero;
and index register 3 carries j, which indicates the maximum value of re-
source for which returns are currently available. As ihe function returns
are being calculated, processors are being started with the index iuforma-
tion in the MTEM tables.

Index register 4 ia loaded with the address located in the second word of
the data vector whose address is in index reg'iotcr 1. The conteate oi in-
dex regiaster 1' can be Uy. Uy, U3, U, Or ug. Correspondingly, word | of
these data vectors contain the address of the first return in data vectors
8y: B3 85 4y, O uL. Word 2 of each u vector contains tha zddress of
the first raturn in data vectors 8y 84 * 15 gg vy oF Y. Index ragister
5 is loaded witu one of these corresponding addresses.

The cuatents of the addreas are the sumn of the contents of index ragistere
S 3 and 5. If this address is present in the memory, the contents are losded
= into A, 1 B3 = 8, and 83 =5 = j+ 3, then the return from funntion 8;

-76-

APPENDIX III

START INITIALIZE

Up: O) Byt

'

-u--cn.+]+j¢,'

NO

YES

YES

B)+ 8 O]

*n +itjt
n 1+3

|

ERASE
uﬂ+i+j¢;

Uy 0 j- vy MAX |

% Q‘I*u‘ wAX NALT

Figure 1l{-7 - Maximisation Function Flow Chart, Machine ! L

P & N

S SO TR T -

b

APPENDIX 111

TABLE III-11 - MAXIMIZATION FUNCTION FROGRAM, MACHINE 1

EoR T i s S PSS TS S ity W e= S——

Item Instruction Remarks Time (usec)
LDI 30
IMP MAX

MAX LDB4 1 1 Inputs 30
LDB5 1 2 B1, B2, B3
LDA - u,, 0, j 30
STA 1 2 3 3 u,, 0,

MAXA LDA 3 ¢ ug, 0, 30
NPJ MAXA ug 0,

MAXC ADD 2 4 8 ug. 0, j 30
NPJ MAXC
AND L.S24 30
INA 3 ¢
STA 1 2 3 3 30
SEH 1 2 3 3
ADD 1 2 3 3 30
BJP3 MAXB
ENB3 2 # 30

; ENA u,

I NA 1 é 30
JNZA MAXE
JMP MAXD I)OuS 30
NOP

MAXE ENA u gy 30
INA 1 g
INZA HLT 30
LDBI uy DOu4
ENB2 4 30

APPENDIX 111

TABLE lil.11 - MAXIMIZATION FUNCTION PROGRAM, MACHINE I{Continued)

Item Instruction Remarks Time (usec)
STI 3 MTEM3
LDA GIM+1 LDIMTEMS3 +
B3, JMP MAX 30

BGN 3 MTEM3
HLT 30
NOP

MAXD LDBI ug 30
ENB2 é
STI 3 MTEM4 30
LDA GIM + 1 LDI MTEM4 +

B3, IMP MAX

BGN 3 MTEM4 30
HLT

MAXB INB2 1 30
JMP MAXA

ML L.DI
IMP MAX

MTEM u, 0
0 j

MTEMI u, 0
0 i

MTEMZ uy 0
0 j

MTEM3 Uy 0
Y j

MTEM4 ug 0
9 J :

.19.

APPENDIX III

TABLE III-12 - MAXIMIZATION FUNCTION DATA VECTOR FORMAT,

MACHINE 1
-1 = e
k f Function u, Function u, Function uj Function u, Function ug
% Y ¥ Y3 u s
- % 8 83 &5 ! Yg
82 B4 +15 8 3 b
Y100y Y1(0) Y2(0)° Y2(0) Y300y Y2(0) Y4(0)" Y4(0) Us(0)' ¥Ys5(0)
Y1y Y Y201y Y2(1) Y31y Y1) Y41y Ya(1) “s5(1)° Ys(1)
12y Y1(2) Y22y Y2(2) "32)° Y2(2) “42)" Ya(2) ¥s5(2)° Ys(2)
‘ “1i3)" Y1(3) Y203y Y2(3) Y33y Y2(3) Y43y Y4(3) Us(3) Ys(2)
Y1(4) Y1(4)) Y2(4) Y2(4) Y34) Y2(4) Yg(4) Ya(4) Us5(4)' Ys(4)
“1(5)5 Y1(5) Y205y Y2(5) U3(5) Y2(5) Y4(5)° Y4(5) U5(5)° Ys5(5)
Y16y Y1(6) Y216y Y2(6) Y36) Y2(6) Ue(6)' Y4(6) Usi6) Ys(6)
Y17y Y1(7) Y2q1y Y1) Y307y Y2(7) Ya7y Ya(n) U57) Ys(7)
Y18y Y1(8) “2(8)° Y2(8) U38) Y2(8) Ye(8) Ya(8) Us(8)° Ys5(8)
“19Y Y19 “219) Y2(9) “3(9) Y2(9) “4(9) Ya9) “5(9) Y5(9)
Y10 71(10) | B2¢10) Y2(10) | Y3qi0) Y2(10) | “s4(10) Ya(r0) | Ys(ioy Ysq0)
Loy Yran | Y2ary Y2quny | Bapny Yy | Y41y Yed) | Ysary Vs
Y102y Vi) | Y202y Yagzy | 932y Yeqi2) | Yag2) Ye2) | sy Ysq2)
13y iy | Y23y Yaady | U3a3) Yaasy | Us13y Yepnd) | Ys3) Ysay
Yra) Yi(ae) | V2004) Y204) | U3014) Y2(14) | Be(14) Ye(14) | Ys(14) YS(14)
sy Yiasy | Szasy Yaasy | Uaasy Yaqis) | Sasy Yersy | Useisy Ysas)
'S 16y Yigie) | Y216y Ya(re) | Uaie) Y2(16) | “aq6y Ya(r6) | Usqle) Ys(ie)
¢ “tary g | Y20y Yzan | ey Yaan | Y1y Yeur) | Ysury Ysan)
“taey Y18y | Y208y Yaisy | Vsey Yz(ie) | Vere) Yeqrs) | Vsus)y Ysis)
; M9y fiae | Y209 Y209 | 09 Y2ae | Y1) Yaae) | Ysaey Ysae)
o Y120F Y1(20) | Y2c20) Y2(20) | “sc20) Y2(20) !“mof Ye(20) | Ysqzo) Ys(20)

-ao -

. g o A CGHE SUE LR e o o —— - P e .
-) . R TV - B - e vv

APPENDIX III

v 2

for & resourcs allocation of 0. 2 is loaded into A. Similarly the return
for a zero resource assignment to function g, is obtained via B4 and B2
and added to the previous conients of the ac'cumula_tor. The least signifi-
cant 24 bits of the sum are replaced by (B3) = j. The contents of A, bits

© S, prs et 1

24 to 71,are riow the sum of the returns from activity function 8; and 8;

fur resource assignments of 0. 2 to 8; and 0 to g8)- The J, representing

the assignment of 0. 2 units to g, is stored in the least significant 24 bits;
A contents are stored in data vectors u, at the address that is the sum ;
of the contents of index registers 2 and 3 plus the contents of the address

position of the instruction; or Bl + B2+ B3+ 3 =z u, + 0+ 2 + 3,

1
For a resource of 0. 2, there are now 2 more possible allocation sets:
0.1tog, and 0.1tog,, and 0 to g, and 0.2 to g,. Returns for these

two assignments are found as indicated earlier, and they are stored in
words with the same address (name). For example, the sum of the 8,
and g, returns for a resource allocation of 0,2 to 8, and 0 to 8, is stored
in a word with an address equal to Bl + B2 + B3 + 3, or u, + 0+2+3.
The returns for other permissible combinations of resource allocation -
suchas 0.1 to 8, and 0.1 to gjiand Otog, and 0.2 to g) - are stored in
memory with the rame name. The name is derived from the contents of
index register 1 and the quantity of resource that is to be allocated.

Since a large negative value was stored with this name upon entry to the
maximization routine, the first larger entry stored with this name will
be located above the large negative value. The next instruction after the
store (STA 123 3) ia a single erase high (SEH 123 3) followed by a fetch
type instruction. The resultof this execution is to erase the word where
the name equal to the contents of the sum of Bl, B2, B3, and 3 and where
magnitude is sinallest. In this case, after one storage instruction two
words are in memory have the same name:

Name Data , o

u1 + 5 some + value

u, ¢ 5 large ~ value é
-81- .

r———

APPENDIX Ii1

RS A

.

After the SEH instruction, the word with the large negative value is
erased. With this sequence of instructions, successive values of a

~function could be stored in the memory; and after a machine cycle, one

word of the data vector could be erased, always leaving the largest
value in the vector at the top of the vector. Index register 3, in com-
bination with index register 2, determines the combinations of allowable
resource allocations, Initially, index 3 has the maximum current re-
source, and index 2 has the minimum compatible resource to be allo-
cated. In the process of finding the maximum return for a given re-
source assignment, index 3 is decremented and index 2 is incremented;
for each combination, the appropriate activity returns are found, #dded
together, and stored in the data vector where the smallest element of

the vector is erased and the largest elemesnt of the vector retained.

Each input to the maximization function results in the formation nf a
segment of one of the maximized return vectors. The transfer of index
data u;, 0, and j to a processing unit reeults in j + 1 pieces of data being
stored in vector u,, all with names up + When the calculation of the

j + 1 pieces of data is completed, only the largest is retained, aud it is
located in jth position of the u, vector.

In this example problem, there are 105 possible combinations of inputs
to thie single routine. This means that a possible 105 processing units
are operating on one program. Five vectors are to be generated - Y.

Uy, U3, Uy Ug - and j can vange between 0 and 20 in steps of 1.

There is even more paralielisra in this saction of the probiem. Each
possible resource combination ¢ould have been assigned to an arithmetic
unit, In this sample problemr:, there are 21 pcesible resource alloca-
tions to the S vactors for a total of 1155 possible combinations of re-
source to be maximired, Each combination could have tsen assigned

to a processor unit. Thie approach, huwaever, would antail mere calcu-
lation to specify the input values of the indices, In the presant method,

only the maximum value. i, of the resource is traneferred, and a loop
is exccuted § + 1 rimes,

S e R R

v

APPENDIX III

The remainder of this program seta up the indices to start processing
. units calculating the u 4 and ug vectors. Whenever work ie being done

on vectors u, Or u, and the largest value has been found for some re-

source, j, then j and the ng OF ug indices are transferred to a new

processing unit to start work on the u, or the ug vector,

h. Lockup Function

The flow chart for the lookup function is shown in Figure llI-8; and the
program, in Table III-13.

The input to the lookup function is the gquantity of resource x to be allo-
cated ¢o the 6 activity functions. The resource is used in combination
w7ith the name of a maximized data vector to search the vector for the
recommended resource assignment., When the recornmended assign-
ment is found, the remainder is assigned to the next maximized vector;
and so on.

The search word is made up of the NHA instruction and the contents of
Bl, which in turn is equal to the name of the data vector and the quantity
of resource to be allocated. This search word is used to find the ele-
ment of the vector that has the recommended assignment for that quanti-
ty of resource. The recommended assignments are stored in the 0 list
of Table IIf-13,

3. RESULTS

a. Activity Functions | and 2

The timing charts for the gl(x) and the gz(x) activity functions are

shown in Figures 11-9 and llI-10, respectively. Since these functions

were relatively simple expressions, it was felt that little would be

gained in tinze by attempting to compute their various values in parallel.

Hence, one processing unit wae sesigned to each function, and an itera- i
tive program was written that svaluates the function over the rangs of
the argument. Each function turns cut a new value of the funciion about
every 180 usec. For each new functional value calculated, the g;(x) »

|2

&

e
-83. :

i i

APPENDIX 111

V

¥ Ty o REN

(n.«ty‘) = y‘-'nvg

-y‘—«qu

(ay +y,) =y, GLisy A

(ns+:)=ys-on+t P

y‘-)"-OLIST+ 1

I
!

g

ey #x =y} =y, = JLIST +2

X=- -
Ye yz~6usr+3

T

f

Uyt Yy ~Yg = y‘*OLlSTir‘

'r's‘YQ’Y’*GLHT*S

T

o Figure II-8 - Look.n Function Flow Chart. Maichine 1

-84.

A A o,

-
i—s W o o g, St g . o ——

APPENDIX III

Item Inatruction @
IMP LOOKUP
LOOKUP | LDBI IN ADD
INBI R .
NHA ¢
ENB4 LA
STB4 R+1
LDA R
SUB R+1
STA R+3
INB2 1
LDB1 2 IN ADD
INBI R+1
NHA g
ENR4 LA
STB4 R+2
LDA R+1
SUB R+2
STA R+ 4
ENB2 F
ENB5 1
LUl INB2 1
LDB! 2 IN ADD
INBI R+2
NHA]
ENB4 LA
STB4 3 8 list
LDA R+ 2 %
SUB 3 0 list .
STA 3 8 liet + |

-8%.

APPENDIX Il

TABLE 1iI-i3 - LOOKUP FUNCTION PROGRAM, MACHINE 1
{Continued)

Item Instruction

JMP LUl

IN ADD NOP

8 LIST g Y5

«-86.

APPENDIX III

3
53

3
3
&
1

l
8 i
¢
!
| :
]
| ~
'
l :
u
§ 8
5
l ;
, i
] P
e N . © e Q ~ . . . ©
(-} - -] -] o - - - - - - —
GINOISEY I2UNIE B 4O AL LINYAD

Figura [LI-9 - Activity Function 1 Timing Chart, Machine |

-'8?.

APPENDIX 1I

‘ . oy
Rt R e SRR TRl U

3240

2800

‘u—
2520

2160

1440

1080

AN—y
o
0 720
TIME IMICROSECONDS)

]

0.2
0.4~
1.C

™ . L -

- - - - ~

8.0
0.6
[eX

X}

AIMOITEY FUUNOCHN 40 ALILNYND

Figure IlI-10 - Activity Function 2 Timing Chart, Machine |

-88.

APPINDIX 111

Pt R

0

functinn generates rhe start irstructions and indicee for the u, maximiza-

< R

tion programn, In thiz inanrer maximization contiiues in parallel! but slight-

lv behind the activity function caiculation. The " maximization program

RN

usesn as its inputs the functional values of the gl(x) and gz(x) programs,
which use 1 processor zach and calzulate in about 3780 psec.

b, Activity Funccvion 3 1

The tirning chart for the ga(x) activity functicn is shown in Figure IlI.11,
This functior. displays more parailelism than the gl(x) and gz(;zZ function,
For each input to the program, three processcors are activated, One
processor calculates indices to maintain the treeing operatinn, one exe-
cutes the iterative loop, and another tests the exponent of .he floating
joint input number. The numbev of processors in use varies from 1 to
35, and total time is about 1950 psec.

The treeing operation is maintainad by calculating from the input indices
two more sets of indices, which in turn result in the calculation of four
sets of indices., Each level of index calculatior results in a number of
index sets equal to a power of two. The quantiiv of data being generated
increases exponentially, while the time to gensc:rate the data increases
linearly.

The approximate rninimum and maximum cutput-data times at the second
through eighth lavels of indexing are shown in Table llI-14; note that the
minimum increasc is 180 psec, and the maximum increase 300 psec,
frorn one level to the next. It iy poss:ble to predict the calculation of a
large number of square roots; for example, 256 in a time equal to 3090
peec,

«. Activity Function 4

The timing chart for the 34(:() activity function is shown in Figure 111.12.
This function computes the sin?s and coasines of 42 angles in sbout 4300
usec, using a maximum of 76 processors. Except for initial calculations,
four processors operate on each value of the input argument. Two

-89.

A
f.
e

YRS
AR 2 S s .

APPENDIX III

TABLE IlI-14 - ACTIVITY FUNCTION 3 MINIMUM AND

MAXIMUM OUTPUT-DATA TIMES, MACHINE I
e

Output-data time (usec)
Level Minimum Maximum .| Data elements
2 1170 1290 ' 2
3 1350 1590 4
4 1530 1890 8
5 1710 2190 16
6 1890 2490 32
7 2070 2790 64
8 2250 3090 128

pProcessors calculate the sine and cosine of the incremental angle; two
more calculate the sine and cosine of the base angle, plus the incre-

merntal angle, while index treeing calculations are being performed by

the previour processors.

In this routine, the mirimura and maximum times between iridex levels
increase at a linear rate; while the quantity of data being generated

increases exponentially for a linear increase in time.

The approximate minimum and maximum output-data times at the second
through fifth levels of indexing are shown in Table III-15; note that the
rainimum increase is 510 psec, and the maximum increase 690 usec,
from ore level to the next. It is Dossible to generate 256 sets of sines

and cosines in about 6650 usgec.

d. Activity Functions 5 and 6

The timing charts for the gs(x) ard the 86(") activity functions are shown
in Figures {II-13 and LiI-14, respectively. These functions are similar
to the gl(x) and gz(x) function in that one processor was assigned 1o each

function because of the low inherent parsileliom.

.90o

APr

o
] c a
| | 0
al ol T ¥ l
- N ” . " © ~
- N
4 | _ o
) ol |
(4] -
o
-
; |
-
] - N - .
-] (-] (-] (-4 -] : :

APPENDIX 111

$
~N
8
°
. = I
J °)
o (] o 4 g
o [
1 o - §
[§w
| ' "§
_] - 9
_| S
L r
0 © ~ ™ o o "~
- - - - - ~N
v 8
8
s
L
4 | . 8
o
4 4 Ol 4 p Ol -
4 o ¢ - - -
J I o - = o
o | - R
- 8
2z
0
Q
i
Y
3
W
3
o *
"~] [] (-] -
; : : o o o - -

TANDISEY MDNNOSIN 40 ALILNYND

Figure lll.11 - Activity Function 3 Timing Chart, Machine |

-91.

APPENDIX Il

Y T '
P . *
vei* 502 2 3 _ ~
— b ~ !
VeI® NS 2 - N .
e—t— o u
R 13 Jvu v -t
s ”Taﬂ” L4]
_ v6i s .u;
vei* 5032 i L
_ o=
veilo s 2 by fay
_ —
et M—OU VL SO
] - (o
_ Vet nis Ve NIS
el
VL19 500 2 Ve 500 ¢
I —l
L NS T Vo IS 2
ress— f"
Vil $02 v9 50D
. l Ly { +re
vit Nis _ Vo NS
d——
voIv SO0 2 V$® $0D 2
| P) I
;91% NS Z 25 NIS 2
_co. 02 “ Ve m%m
. e
Vol IS b v NIS 1 Fe
vsi* 02 2 V9o 500 2
e j —
VSI® Nis Z Ve NG 2
_ pes ¥sco
vsi $02 v
b $1 l N so
_ Vst wis Vo NIS
vei» 300 2 VER SO0 2
P S R
viT NS T VEP NI T
vei SO0 \VESOD
"
i ¢
“ el NS VE NiS
r emdema—
«_ﬂ- > 2 \erS0D 2
vEIS RIS 2 Ve oS 2
~ wn. $0J vZ 502
_ ST NE s
| S
em.a SO0 2 e s00 2
e
VoS 7
NS Sy RIS S———
ﬁ. SO0 x ot
SN U)
_ VEI NIS L — .
viie v
m v 0D o
<.. 05 »
348 08 | o i
z

R

1SCNG I BT . I
996€ 09 UFZE [+ 14 0752 o532 00@ oFrL 0HG . (20 o 2

APPENDIX 1

p—y
L3
[~
e d
-
L
<
-
e
]
£
O
e
[
o]
— RS —— y — - et [had
Vil NiS I ; I ‘e o ¢
i } { > -
(IR RN “ i ; i S - >
{ ! i m “+ c []
P — !) <
\0iP WIS 2 i ' G (o]
1 V0 500 m w
096t 009€ avze ooz | 1 L. : c
vOi WIS ! \h, 3
60 oo”~ " > b
05 2 v6" S kS W.
O NIS 2 VE¥ IS 2 u .V..
o
-
prepe V6 WIS g)
VOZ NS oz 46 S0 g B S A S <
— edme— '
vei® 500 2 \B*SCO T ~.
}
veto wis Z Voo NS 2 -
3 b d
| =% | I S
H . 4
. S _—— RONDES——
_ VS WS By A LR N
i su_ 2 vee 503 2 “
- -.
MO NS T NP NS 2 bae
[N
c!io—ou VL S0
[- ‘0
Vel NS VL NS i
l—l —
vii® SO0 2 v $0D 2
| S P
VeI NS 2 492 NI§ 2
Vit S0 vasc~ | _
i i it R LX)
Vil NS V9 NIS
A —d
voL? 503 2 enuﬂuﬂ
|
oL Nis 2 \5® MIS 2
pot 503 . v ._3 «
| 4
V9t KIS b VS NiS ! °
vsi® 500 2 V¥ 50D 2
o — J S—
yEI® NIS Z e NS 2
ll h————
V51 560 [TXTE)
SUNURE ISR SN EERGNINUVS SR AU SO A —— I -t !

APPENDIX I1I

TABLE I1I-15 - ACTIVITY FUNCTION 4 MINIMUM AND

MAXIMUM OUTPUT-DATA TIMES, MACHINE 1
W—a‘m

Output-data time (usec)
Level Minimum Maximum Data elements
2 2340 2500 2
3 2850 3200
4 3360 3890 8
5 3870 Co .

About 450 usec are required to generate a new element of the output data
vector. The total output vector for gs(x) is available at 4560 ns2c; and
for g6(x), at 4710 usec. In addition, the g6(x‘) generates indices to be
transferred to the u, maximization program.

e. Maximization Function

The data flow diagram for the maximization function is shown in Fig-

ure I[I-15., It should be noted that the inputs to the maximization func-
tion are sets of indices that allow generation of the maximized return
vectors u, through Ug, referred to here as maximization programs. The
timing chart for the u; maximization program is shown in Figure III-16;
for the u, program, in Figure 1I-17; for the uy program, in Figure III-18;
for the ug program, in Figure III-19; and for the ug program, in Fig-

ure III-20.

The u, program of the maximization function gets its input indices from
the gx(x) activity function. Each input allows the maximization program
to compute all possible combinations of returns from gl(x) and gz(x) for
the given resource to determine what resource allocation will give the
maximum return. Each time the 81"‘) activity function generates a set
of indices for the maximization prograin, a processor is started. As
the resource to be maximised increases, the time required to rnaximise

ugsn

S e TN wd

APPENDIX II
| i
:

3240

e

2520

_—
2160

cam—
180

1440

= =
720

4
0
TOrE ANCROSECONDS)

! - e
: o N « - - L ~ - .) Q
L © k- o -] - - - - - ~
OBNOISTY FONNDEBN 40 ALILNYND
«’ Figure lil-13 - Activity Function $ Timing Chart, Machine I

-96..

APPENDIX 111

2000 0 300

21680

1800

fp—
1000

|
I : R

|
| - '
IR

- - - - - »~

Q ~ . -
[]] o
CINDITEY 3MN0EBN 4C 2 A1LNEAS

Figure Ll-14 - Activity Function 6 Timing Chart, Machine [

Q7.

. "!.»,& }L, ‘.

APPENDIX III

B‘ll) ﬂ:ix) g,(l) g‘(x) BS(X) U‘(X)
1

-...o-o-J *‘- - .J -—-aa e e
\\'(x) uz(x\ 'Js(i)

NI e S
U‘(!)

=~ —— e - cmemee==d

HS(X)

Figure III-15 - Maxim’zation Programs Data Flow Diagram, Machine I

the return for this resource increases; for the u, program, this time

an\.uits to 7500 usec (see Figure I_J.I-lb).

The u, a. - -4 programs a~quire their inputs from the g3(x) and g(.)(x)
[9
activity functions, respectively, The Uy and ug programs are started

from the ug and u, programs, respeciively,

The maximization progranis acse started as soon as data are generated
that a program can operate on, (he dashed lines on the ug timing chart
(Figure I11-20) represent idle (wheel spinning) time whare the arithmetic
unit is looking for a piece uf data yet to be generated. Until the data are
generated by tne u, program, the ug procecsor 16 not constructively use-

~ ful,

As an explaration of the ug wheel spinning time, :} 2 u, program gen-
erates indices to start the ug prograrm, and there ia a disparity berween
(1) the time the u, prcgram gencrates dita (or the stave of ug aind (2) the

s time that u, has corresponcing data ready for g A sclution to che

| A .98.

APPENDIX III

7920

6480

5760

5040

4320

3
N
r iz
)
3
' g8
| T
| 2
1 .
) ~ * " .) ~ - . ® °
° P o &) ° - - - - - ~
QANDIESY FOMNOSIN 40 ALILNYND S
Figure lI-16 - Maximisation Program | Timing Chart, Machine | =
-}
-99-

-l

APPENDIX II

!
e
3 oop
§
: 0.2
04
0.6 pu
]
0.3 !
1.0
1.2
e
g
4
<
W
§s
2
3
w
c
$ e
2
>
: |
320
o 1080 180 280 R0 3980 "t 2400 i 880 7980 290
‘ “ TINE (MICROSECONDS)
.% .
7 Figure llI-17 - Maximisation Program 2 Timing Chart. Machine I
-100.
s

APPENDIX 1II

4320

3200

2160

1440

e,]
aa———
20
TME OMCROSECONDS)

- R e
QANDISEY JIUNOSIN 20 AL LNYNO

Figure LI-18 - Maximization Program 3 Timing Chart, Machine I s

-101- Y

N N - ———

APPENDIX Il

problem would be to let u, generate the index sets for ug, Less proc-
essor time would be wasted, although there would be a small amount

of time at the beginning of uy and u. where data was available but no

5
processor operating on it.

COMPARISONS AND CONCLUSIONS

The processors used for Machine I are charted in Figure III-21. Ta-
ble III-16 compares the IBM 7090 sequential (Appendix II) and the
Machine I parallel execution times for the dynamic programming prob-

lem.

Although the Machine I executior. times for functions gl(x), gz(x), gs(x),
and gb(x) are longer than for the 7090, it should be realized that these

routines were not tree'd.

TABLE I1i-16 - COMPARISON OF IBM 7090 AND MACHINE I

EXECUTION TIMES, DYNAMIC PROGRAMMING PROBLEM

709 :
7090 sequeu ..al time (usec) Machine I paral-
Function Minimum Maximum lel time (usec)
g (x) 276 276 3,780
gz(x) 3€3s 872 3,780
gs(x) 3,7% b, 823 1,980
g.(x) 2,984 3,993 4, 320
g (x) 682 i, 185 4, 560
go(.\') 335 402 4,710
Maximization 140, 387 208,037 16, 460
Lookup . 383 383 510
Total 0. 151 (sec) 0. 224 (sec) 0. 016 (sec)
Storage required 570 Co 734
-102-

o

[IS—,

0.0

0.2

0.4

0.6

0.8

1.0

QANDISSY IDBAOSIY 4O ALIINYN

-

2,880 3.600 4.0 3.040 5.780 6.4%0

1. 440 21860

TME (MICROSECONDS)

;|

APPENDIX 111

5.040 8,760 8,420 2,200 7,920 8,600 9.360 10,080 10,600 11,820 12.2% 12.360

Figure 111-19 - Maximization Program 4 Timing Chart, Machine |

-103.

w‘m\w‘v ﬁ o —-«w«-*‘:' \ I N e 1 OSE E ah b RA N MUMNE KT Nt

r—Jﬁwwx_ B adih o »«-}-» S B PRSP o—

i e it o - Wty ool i vt ih s R e Tt < 1 WL .-

0.0

——
0.2
)
comewmmg——
0.4
———————————
0.6
0.8
-— e .-

= e e !

1.0 ;

- oo

D Gl M S A W W S s e

W Gh NG SER VED CHR JUN GIS SN GUR i SED GEe G SRR

-—-ﬂ———.-.——-.—u-—-_h

D G WS A YIS AT G WD AR TS R U R e

-—--IP-—--I--——

e G G DUD G S SEP PR WS WS W N

Y I T WD R WA T D W

----lb---ﬁ

20

22 I .

1.480 2.180 2.800 31.400 4320 S 040 3.0 ¢ 480 7.200 7 80 6,640 L

SUAMTITY OF RESOURCE ASSIGNED

TiME (MICROJECONDS)

APPENDIX 111

e etk

- A e e N R WR G @

T N e Gem MR THD R A R W SUR WS IR R B

--_-1P—---F--_d - o WO Wm e

---b-c--t-“—_up--—d __--!Q

....-.._-.........,_........-.}-_...

-—-—L—--ub—---y—wnn--—- S

- ol M S WS G50 G0) P WD NN (e TR GUP TR TP TR W D WP G I T W) WS

* 300 T a0 8 sad LI] '0.080 10, 80 15,540 12240 —"‘J“O 13,680 te a0 15920 15,740 ‘6 &80

Figure 111.20 - Maximization Program 5 Timing Chart. Machine |

«105.

70

60 —4—

sC o~ \

20
/ +=

1
¢ 720 1440 2150 2 080 3.600 4.320 040 5760 6.480 7,200 7,920 2600

TIME (MICROSECONDS)

PRGCESSOR USAGE

APPENDIX 111

\<

'\\

i

|
1

6.480 T 200 7.920 " 640 9.360 10,080 10.800 1,520 12,240 12,92 13580 14.400 15 Qo0 15740 16.460

Figure ll1-2] - Processor-Usage Chart, Machine |

~107.

APPENDiIX III

The squa.e root and sine routines were more complex and exhibited
p~ rallelism that was extracted. In addition, these two functions were
tree'd, The sine routine generated about four times the data that the

same routine generated on the sequential machine.

The maximization function takes significantly less time with Machine I
than the 7090. The reason is that the Machine I memory is used as the
maximizing mechanism. The various combinations of returns are cal-
culated and then sorted by the memory with the largest floating to the
top and being retained.

It is relatively easy with Machine I to use a large nurmnber of processor:
on even a small problem, There is a significant amount of parallelism
in many problems capable of computer solutiin. Any iterative sequen-e
where successive loops are independent can be assigned to a group of
processors for parallel execution. Independent programs can be exe-
cuted in parallel and can in turn start any dependent programs as suit-

able data is generated keeping active processor time to a minimum.

Machine I has an estimated 512 processing units. All processors were
assumed to have (1) a program counter, (2) an accumulator, (3)a quu-

tient register, (4) six index registeri, and (5; an instruction register.

Each processor has the capability of content addresaing any word in
memory and can execute interregister transfers. Data can be trans-
forred between piocessors only via the memory. Machine | fetches
and executes two inatructions iz 30 peec. The 7090 reguircs about

8. 72 peec for the samv dperutions. Hence, the 7090 is 3. 44 faster
than Machine 1.

The totai time for the solution ¢f the dynamic pregramming problem on
the 7090 ranged from 150 10 220 msec. Ths total time {or problem so-
lution on Machire] waa 16 meec. Hence, the Maching | solution time
was 9 to i4 times fanter than the 709C. Furthermore this particular
problem required 8 maximum of oniy 60 of the available 512 processors

-199.

s
[EEERET R J

APPENDIX I

at any one time. An averége ofoonly 22 processors was used. Had the
problem been large enough to use the full 512 processors at the peak
period, Machine I whuld then have had a epesed advantage of

-sal-g-x(9-l4)=76-ll9tol.

In additicn, many processors would have been available at nonpeak

times for other uses such as compiling.

-110-

L TN T e

APPENDIX IV - PROGRAMMING MANUAL FOR MACHINE I

MACHINE ORGANIZATION FOR MACHINE I

The Machine I parallel processor organization used in this study is com-
posed of 512 logical processing units and 32, 768 words of memory. Each
processing unit has the following registers: program counter, instruction
register, accumulator, quotient register, and six index registers. The
program counter is a 24-bit register that is stepped sequentially to gener-

ate the addresses of the instructions in the program.

The instruction register is 72 bits long. It is divided into two 36-bit sec-
tions, upper and lower, each holding a single 36-bit instruction. In most
cases, an instruction can be located in either the upper or lower half of
an instructicn word, in a few cases, the instruction must be located in

the upper half of the word.

-The accrmulator is a 72-bit register that is considered as one register
for most instructions; in some cases, it can be treated as two 36-bit

registers, upper and lower.

The quotient register also is a 72-bit register; it is treated either as one

register or two, depending on the instruction being executed,

Any combination of three of the six index registers included in each proc-
essing unit may be used. Their contents may be added together with the
contents of the address field of the instruction to obtain an operand ad-

dress, an operand, or a shift count,

It the indices are 1, 2, and 3, there is no reduction in the size of the ad-
dress f{ield of the instruction. If the indices to be added include 4, 5, or
6, then the address fie'd 1s reduced by 6 bits and bit 28 is setto 1. The
h-bit reduction still leaves an addreas field of 18 bits. The original 3-bit

11l

LN

o 1 R A5

APPENDIX IV

index designator field plus two more 3-bit fields are used to contain the
3-bit codes of the specifiad index registers,

2. INSTRUCTIONS

Instruction Classes

The Machine I parzllel processor instructions may be grouped in four
classes,

Class 1 instructions treat the contents of the address field as the op-
erand. These instructions can be . ‘dexed with: any combination of
three index registers. The operand is the reesult of the addition of
the contents of the specified index registers and the conteats of the
address field of the instruction.

Class 2 instructions treat the contents of the address field as an op-
erand address. These instructions can be indexed with any combina-
tion of three index registers. The final operand address is the result
«f the addition of the contents of the specified index registers and the
contents of the address field of the instruction. The word received
by the processor after a fetch type operation is the word next higher
than the request word. When a processor is requesting a word that
may or may not be currently available in memory, an NPJ instruc-
tion following the fetch will enabie 2 comparison of the names of the
requested and received words {or an exact match. Ilf they match,

the program continues; if they do not, then a jump is made to the
fetch instruction. A number of desirable operations in this class
require execution of two instructions. This subclass is composed

of single- and multiple-arase instructions that require a fetch type
instruction following the erase instruction,

Class 3 instructions treat the contents of the address fisld as a shift
count. These instructions can be indexed with any combination of
three index registers. The {inal shift count is the result of the

-112.

APPENDIX IV

o

addition of the contents of the specified index registers and the con-

tents of the address field of the instruction.

Class 4 instructions are special instructions that allow processor

unit interregister transfers.

Instructions

ENA

ENAU

ENQ

ENBX

B" y Enter A Lower

The 24-bit operand Y is entered into A lower. The
most significant bit of Y iu extended in A, Bits 25
to 72 of A are replaced with bit 24 of the operand Y.
Y=y+ B™. Y is the sum of y and the contents of
any combination of three index registers.

B" y Enter A Upper

The 24-bit operand Y (Y = y + Bn) is entered into

A upper, bits 37 to 60. The most significant bit of
Y is extended in A upper, bits 61 to 72. The con-

tents of A lowsr are unchanged,

B" y Enter Q Lower

The 24-bit operand Y (Y = y + Bn) is entered into
Q lower. Bits 25 to 72 of Q are replaced with bit
24 of the operand Y,

B" y Enter Index Register X

The 24-bit operand Y (Y = y + Bn) is entered into
the specified index register, X, with X = 1, 2, 3,
4, 5, 6. This instruction permits the transfer of
data from the address field of the instruction to the
specified index register or the transfer of the con-
tents of any group of index registers with y added
or not to the specified index register.

-113-

APPENDIX 1V

B s s e 'ﬂ

INA

INAU

INAE

Example 1:
(B1) = 2
(B2) = 3 B" = (B2) + (B3)

{B3) = -4

ENB1 B2, B3 6

The contents of Bl are replaced by 5:

(B2)+(B3)+y =3-4+6 =5,
Example 2:

ENB! Bl, B2, B3 6

The contents of Bl are replaced by 7:

(Bl) +(B2)+(B3)+y =2+3-4+6 =7,
Bny Increase A Lower

The 24-bit operand Y (Y = y + B") is added to the
least significant 24 bits of A lower. No addition
takes place beyond bit 24 of A. The contents of
any combination of three index registers can be
added to the A register, bits 1 to 24.

Bny Increase A Upper '

The 24-bit operand Y (Y = y + B") is added to the
least significant 24 bits of A upper, bits 37 t0 0.
No addition takes place beyond bit 60 of A.

Bny Increases A Lower with Extended Addition

The 24-bit operand Y (Y = y + B") is added to the
contents of the A register. If the contents of the A
register lower is an instruction with an address in
its adidress field, an INAE instruction may result
in alteration of + instruction operation code and

‘l“-

i . .
R it 24t 3 AN RIS ST T

APPENDIX 1V

tag field. Similar changes may occur in A upper
if a carry propagates into A upper,

INAUE . B% Increase A Upper with Extended Addition
pe N

[
13
T

. ol

e
H

*

£l

£

£

£

é

% .

.

g

5

H

The 24-bit operand Y (Y = y + Bn) is added to the
contents of A upper. The restrictions on INAE
also apply to INAUE.

INBX Bny Increase Index Register X

The 24-bit operand Y (Y = y + B") is added to the

contents of the specified index register, X, with
X=1,2,3,4,5,6,

Example 1:
(B1) = 2
(B2) = 3
(B3) = -4

INB1 BZ2,B3 6
The countents of Bl are increased by 5:
Y = (B2)+(B3)+y =3-4+6 =5,
Example 2:
INBl BIl, B2, B3 6
The contenta of B! are increased by 7:
Y =(Bl)+(B2)+(B3)+6 =2+3-4+6 =17,
ISKBX B"y Index X Skip
X =1,2,3,4,5,6

The contents of the specified index register, X,
with X =1, 2, 3, 4, 5, 6, are compared with Y.
If the two quantitiea are equal, the specified index

-115.

z
g
£

i A

© oo e

&

-

APPENDIX IV

A

LDA

LDQ

LDBX

register is cleared and a full exit is performed. If
the quantities are unegual, the contents of the speci-
fied index register are increased by one, and a half
exit is performed. Normally, this instruction oc-
cupies the upper half of an instruction word. A half
exit then results in execution of the instruciion in
the lower half of the instruction werd., A full exit

is accomplished by increunenting the program
counter by 1 and executing the upper instruction

of this new instruction word.
B™M Load A

The contents of A are replaced by the 72-bit cperand
contained in storage location M, with M = (m + (Bn)).
M, the operand address, is obtained by adding the

contents of the indicated index registers to m.
B"m Load A Complemsnt

The contents of A are replacad by the complement
of the 72 - bit operand contained in storage location
M, with M = (m + (B™)).

B"m Load Q

The contents of Q are replaced by the 72-bit operand

contained in stcrage location M, with M = (m + (Bn)).
B"m Load Index Register X

The contents of the specified index register X, with
X=1,2, 3 4,5, 6, are replaced by the least sig-
nificant 24 bits of M, with M = {m + (B")).

Example:
(Bl) = 2
{B2) = 3
-116.

P T R I A e T

APPENDIX IV

(B3) = -4
0006
0007 000000000000000000001013
0010
LDBl1 Bl, B2, B3 6 * .
The conteats of Bl are 00001913,

M= (m+(Bl)+(B2)+(B3)) = (6 +2+3-4) = (7).

ADD B"m Add

The 72-bit operand contained in location M is added
to the contents of the A register. M = (m + (Bn)).

SUB B®m Subtract

The 72 -bit operand in location M is subtracted from
the contents of A, M = (m + (B")).

MLY B"m Multiply

The contents of storage location M are mulitiplied
by the contents of the A register. The 144-bit
product is contained in AQ.

DVD B"m Divide
The contents of AQ are divided by the contents of

storage location M., The quotient is left in A and
the remainder in Q.

FAD B"m Floating Add

The sum of two 72-bit floating point operands is
formed. The floating point operand in M is added
to the floatir.g point operand in A. The result ia
normaiised and rounded,

-117-

%
¥
H

ok e

(G 2 T

s -

APPENDIX 1V

FSB

FMP

FDV

xS

Y

B"m Floating Subtract

The difference of two 72-bit floating point ocperands
is formed. The contents of storage address M are
subtracted from the contents of A. The resuclt is

rounded and normalized.
B"m Floating Multiply

The floating point contents of storage location M
are multiplied by the floating points contents of the
A register., The product is rounded and normalized
in A,

B"m Floating Divide

The floating point contents of A are divided by the
floating point contents of storage location M, The

floating point quotient is retained in A.

Bnm Store A

The asterisk indicates a sig-

nificantly new ins’ruction,

The contents of the A register are ve-created in a
memory word with address M, Every atore in-
struction results in the creation of a new word in
memory with an address of M, It is possible that
a numbe: of words in memory may have the same
address and bs ordered according to the contents
of their data fields, If this situition cannot be tol-
erated then (1) care should be exercised to assign
each word stored 1n a unique address or (2) all
wurds in memory with this address should be
2rased before the new word is created. The

-118.

APPENDIX IV

*STQ

*STBX

ability to store a number of words with identical
addresses is desirable since after the next machine
cycle the vector of words will be sorted according
to their data fields, smallest to the largest.

B"m Store Q

The contents of the Q register are re-created in a
memory word with address M (see +STA instruc-
tion above).

B™"m Store Index |
X=1,2,3, 45,6

The contents of the specified index register, X,
withX =1, 2, 3, 4, 5, 6, are re-created ina
memory word with address M. The 24-hit con-
tents of the index register are stored in the least
significant 24 bits of the lower portion of the word.

Example:
(B1) - 2
(B2) = 3
(B3) = -4
STBYI Bl BN B3 6

The contents of index ragister | are stored in
location 7: ‘ _
0907 0000C0000002000362000002

_ If there had been other words in memory with
an address of OUCT then the newly creatsd word

may have beer. arothes elemnent of the vector of
words with address 0007

0007 00000000 0020000000000

<1i9.

STl e U il s 1 D e R 1 T

’

-

§ APPENDIX IV
5 0007 000000000000000000000002
,,: 0007 000000000000000000000006
ARS Bk A Right Shift
‘“:"T The contents of A are shifted right K places, with
K = k + (B"). The sign is extended and the lower
bits discarded.
QRS B™k Q Right Shift
The contents of Q are shifted right K places. The
sign is extended and the lower bits discarded. K =
k + (B
LRS B"k Long Right Shift
' The contents of AQ are shifted right K places. The
sign of A is extended and the lower-crder bits of A
replace the higher order bits of Q. The !ywer order
bits of Q are discarded. K = k + (Bn)
ALS Bk A Left Shift
The contents of A are shifted left circular K places.
The higher-order bits of A replace the lowver order
bits. K = k + (B")
QLS B™k Q Left Shift
The contents of Q are shifted left circular K places.
The higher order bits of Q replace the lower order
bits. K = k + (B")
- LLS B"k Long Left Shift

The contents of AQ are shifted left circular K places.

The higher-order bite of A replace the iower-order
bits of 2. The higher-order bits of Q replace the
lower order bits of A, K = k + (B")

-120-

-APPENDIX IV

B e s

b, &
B o
wt !
(s e e e e .

SCA

sCQ

AND

OR

EOR

utr

B”k Scale A

The contents of A are shifted left circularly until

the most significant bit is to the right of the sign

bit or until k = 0. Shift count k is reduced by one

for each shift and terminates when k = 7, or when

the most significant bit is to the right of the sign *
bit. Upon termination, the count (scale factor) is
entered in the specified order register. K = k +

(8")

B"k Scale Q

The contents of AQ are shifted left circularly until
the most significant bit is to the right of the sign
bit of A. Shift count k is reduced by one for each
shift, The operation terminates when k = 0 or
when the most significant bit is to the right of the
sign bit., Upon termination the count (scale factor)
is entered in the specified index register. K = k +
(B™)

B"m logical AND

The contents of A are replaced by the logical AND
of Q and the contents of M, M = m + (Bn)

B"m Logical OR

The contents of A are replaced by th= lecgical OR of
Q and the contents of M. M = m + (B")

Bnm Exclusive OR

The contents of A are replaced by the exclusive OR
of the contents of Q and the contents of M, M =
m + (B")

It

-121-

APPENDIX 1V

IMP B"m Jump

Program control is transferred to location M,
Normally, the program counter is incremented
by one for each instruction word executed. In
the case of a jump instruction, the contents of
the program counter are replaced by M and the
instruction at this address is executed next. M =
m ¥ (B™)

INGA B"m Jump if A Is Negative

Program control is transferred to location M if
the sign of A is negative. If the sign of A is posi-
tive the next sequerntial instruction is executed.

M = m + (BY)

INZA B"m Jump if A Is Nonzero

Frogram control is transferred to location M if
the contents of A are not sero. If the contents of
A are zero, the next sequential instruction is exe-
cuted. M = m + (B")

INGN 8% Jump iZ Q Is Negative

Frogram control is transferred to location M if
the contents of Q are negative, If the contents of
Q are positive, the next sequential instruction is

evecut~d,
JNZQ B'm Jump if Q Is Nonzero

Program control is transferred tu location M if
‘ the contents of Q are not zero, If the contents of
: Q are zero, the next sequential iastruction is exe-

cuted,

=122~

29, MW*’M"“’ WA SAMG L Ttk Ty A et L - o
m N~ bty s & - .
-

APPENDIX IV

coM

*NPJ

*LDBX

*ADBX

i
g
!
i
;

B"m Compare

The contents of A are compared with the contents
of M. If (A) are equal to or greater than (M), a
half exit is performed. If (A) are less than (M),

s s SR DY, T

a full exit is performed. The compare instruction

normally is an upper instruction,
B"m L.dex X Jump

If the contents of the specified index register X,
with X = 1, 2, 3, 4, 5, 6, are not zero, the
quantity is reduced by one and a jump is executed
to location M. If the contents of the specified in-
dex register are zero, the next sequential instruc-

tion is executed, M = m + (Bn)
B"m Nonpresence Jump

A jump to location M is executed if the address of
the word obtained from storage is not the same as
the operand address in the instruction, M = m +
(%)

UA Load Index X Upper A
LA Lower A
uQ Upper Q
1R Lowe: Q

The least significant 24 bits of the upper or lower
halves of A or Q are loaded into the specified index
register, X, with X = 1, 2, 3, 4, 5, 6,

UA Store Index X Upper A

LA Lower A -

uQ Upper Q f

iQ Lower Q
-123-

S sl dlh

o
i
i

APPENDIX 1V

*SEH
FETCH

*SEA
FETCH

*SEQ
FETCH

*MEH
FETCH

*MEA
FETCH

*MEQ
FETCH

e

The contents of the specified index register, X,
with X = 1, 2, 3, 4, 5, 6, are stored in the least
significant 24 bits of the upper or lower half of A
or Q.

a Single Erase High
B Fetch type instruction

The contents of the location which is next larger
than the lower limit word B are fetched and then
erased from memory. @ and 8 are the upper and
lower limit words that bracket a block of data in
memory. The data field of word @ i8 maximum
positive while the data field of word f8 is zero. The
word fetched and erased is the word next larger

than the lower limit word S.

028 a=(m+(BM), 8= (m+(B"))

Single Eras= A

Single Erase Q

The upper limit word a has its contents set to the
contents of A or Q. The operation is the same as
for SEH,

Multiple Erase High

The execution of this instruction is the same as for
SEH except that all words between the limits a and

B are erased.

Multiple Erase A

Multiple Erase Q

The execution of these instruction is the same as

-124.

. 5 ———————— *“w "‘(W -
-
. T

APPENDIX IV

*SEHA
FETCH

*SEHQ
FETCH

*MEH A
FETCH

*MEAQ
FETCH

*SEAA
FETCH

*SEQQ
FETCH

*SEQA
FETCH

*SZAQ
FETCH

*MEAA
FETCH

for SEA and SEQ except that all words between the

limits @ and B are erased,

Single Erase High A

Single Erase High Q

The execution of these instructions is the same as
for SEH except that the lower limit word is the

same as the contents of A or Q.

Multiple Erase High A

Multiple Erase High Q

The execution of these instructions is the same as
for MEH except that the lower limit word is the
same as the contents of A or Q.

Single Erase AA

Single Erase QQ

The execution of these instructions is the same as
for SEA except that the lower limit word is the
same as the contents of A or Q.

Single Erase between limits QA

Single Erase between limits ..

The execution of these instructions is the same as
for a SEH except that the upper limit word a is the
same as the contents of Q or A and the lower limit
word S is the same as the contents of A or Q.

Multiple Erase between limits AA

-125-

1 -

APPENDIX IV

*MEQQ
FETCH

*MEQA
FETCH

*MEAQ
FETCH

*NHA
FETCH

*NHQ
FETCH

*BGN By

Multiple Erase between Limits QQ

The execution of these instructions is th: same as
for a SEAA, SEQN except that all words are erased

between the limit words,

Multiple Erase between Limits QA

Multiple Erase between Limits AQ

The execution of the instructions is the same as
for SEQA, SEAQ except that all words are erased

between the limit words.

Next Higher than A

Next Higher than Q

The word next higher than the lower limit word 8
with contents equal to contents of A or Q is fetched

from memory.
Degin Y

Y is added to (A) upper. The contents of A are then
stored in the WAIT LIST, Thia instruction is used
to start arithmetic units, Prior to the BGN instruc-
tion, A has been loaded with an LDI ____ , JMP
PROG instruction. Execution of the BGN results

in the addition of Y to the LDI instruction and the
storage of this instruction pair in the WAIT LIST,

The address that is added is the address of the

~ location where the indices to be transferred are
! stored,
3. NUMBER REPRESENTATION
o A fixed point number consists of a sign bit and coefficient. The upper bit

-126-

e —— ‘ww‘ J"" ““‘m w- g e - —

APPENDIX 1V

of a fixed point number designates the sign of the coefficient. If bit 71
is 1, the quantity is negative; a 0 sign bit signifies a positive coefficient,
The coefficient may be an integer or fraction. The binary point;, in the
case of an integer, is assumed to be immediately to the right of the low-
est order bit; for a fraction, the point is put to the right of the sign bit.

Floating point numbers are represented by a coefficient and an exponent.
The coefficient consists of a 60-bit fraction in the lower 60 positions of
the floating point word. The coefficient is a normalized fraction equal
to or greater than 1/2 but less than 1. The highest order position, bit
71, is the sign of the coefficient, If the sign bit is 0, the cosfficient is
positive; if the sign bit is 1, the fracticn is negative and in ONE's com-

plement form,

The floating point exponent is an 11-bit quantity with a value ranging frxomn
00008 to 37778. It is formed by adding a true positive exponent and a bias

of 20008 or a true negative exponent and a bias of 1777 This results in

al
a range of biased exponents as shown below,

Three positive Eiased True negative Biased
exponent exponent axponent exponent
+0 2000 -0 2600
+1 2001 -1 1776
+2 2002 -2 1778
+1776 3776 ~-1776 0001
+17778 3777 -1777 0000
BIBLIOGRAPHY

GER-12105: A Dynamic Pr%&rammin Program for the IBM 7090, Akron,
Ohio, Goodyear Aerospace Corporation, F'ebruary 1955,

GER-11777: A Dynamic Programming Problem. Akron, Ohio, Goodyear
Aerospace Corporation, 124 October 1964.

GER-11949: Parallel Execution of the Dynamic Programming Tachnique.
Akron, Ohio, Goodyear Aerospace Corporation, &1 ganuary LA

-127.

APF:NDIX IV

GER-113875: A Parallel Processor Organization. Akron, Ohic, Good-
year Aerospace Corporation, 15 Dece.nber 1964,

-128-

&

APPENDIX V - BI-TCONIC SORTING

1. INTRODUCTION

In a previons company report, 2 a new internal sorting method was dis-
cussed. Discussed here is another method that, while not as efficient as
the referenced method, has certain advantages in parallel processors. To
sort 2" words, the method presented here (bi-tonic sorting) requires

n{n + 1)2.m -2 comparisons (with exchanges) while that of the referenced

method requires only (n2 -n+4)20 " 2 1 comparisons.

2. BI-TONIC SEQUENCES
Definition: If
A=al,az,....a

and

szl'bZ""’bn

are sequences of numbers, then B is a circular permutation of A if and
only if there exists an integer, k, with 0 Sk $n-1, sothat

for all i's satisfying

and

GER-11759: A New Internal Sorting Method. Akron, Ohio, Goodyear Aero-
space Corporation, 29 September 1964,

-129-

| . ST

APPENDIX V

for all i's satisfying

Definition:

A=al,a2,...,an

is said to be a bi-tonic sequence if there exists a circular permutation of

A, B=b,, b . "'bn' and an integer i, with 1 % i % n, so that

ll

>
b = b,

2’

2 2 2 ¢ < < s
R T L T R S L

It is easy to see that any monotonic sequence is bi-tonic, as is as the con-

catenation of any ascending sequence with any descending sequence.

Theorem i: Any subsequence of a bi-tonic sequence is bi-tonic. Proof:
Let A be any bi-tonic sequence and A' any subsequence of A, The theorem
need only be proved for any circular permutation of A, Letting B = bl.
bz. s bn be a circular permutation of A where

it can be seen that any sudsequence of B is bi-tonic. This concludes the

proof,

Definition: If

Aaal. tz.....apq.
where p and q are integers ard | $i¢ p. then the sequence Ai p is
defined
A t a, a N A .
i, p i' Tiep Tie2p iv(q-1)p
&
: Definition: 1f
A‘l‘. ‘2"“"pq‘
then the sequence A" P ie defined as the sequen:e l\i p rearranged into
£ ascending order.
»130.

ok —

APPENDIX V

Definition: If

A= al.-az. . e "apq'

the derived sequence A(J' a) for 1 & J < q is defined as a saquence of p

terms wnose ith . term is the jth term of A'i P’

Example: Letp = 4, q =3, and A = 7, 9, 13, 20, 17, 15, 10, 8, 4, 1, 3, &,
Wh.n A is written as terms of a 3- by-4 matrix (acroes the first row, then

across the second row, etc.):

then the first column is the sequence Al 4" 7, 17, 4, the second column
is the sequence AZ 4 = 9, 15, 1, etc. If each column of this matrix is
rearranged into ascending order:
4 1 3 5\
7 9 10 8!,

17 15 13 20/

thaon A' = 4, 7, 17 is the {irst column, A' =}, 9, 15is the ucond
columt, etc., and A'"' = 4.1, 3, 5is the first row, A"’ "7 = 7, 6,10, 8

is the second row, etc.

Ja the above example, A is bi-tonic since one circular permutat:on of A is
20 17, 15, 10, 8, 4. 1. 3, % 7.9, 13. As predicted by theorem 1. the

. :] .
subsequences A, . @ 7. 17, 4, AZ. 4 ° 9. 1h LAy 0 13, 10, 3, and
= 20, B, 5. also are bi-tonic., In the example, the derivod sequences.
(3. 3)

AL 4
Al s Al s 9 10, 8, and A s 17, 15, 13, %0,

are bi-tonic and, furthermore, A“' 3 has the lesst four members of A,

-131.

L T

AFPENLIX V

A(z' 3 has the middie four, and A(a' 3) has the greatest four members of
A. Hence, tc reorganize A into ascending order, it is sufficient to re-

arrange cach of the three bi-tonic~derived sequences into ascending order
and concatenate them. Theorem Z shows this is true for any bi-tonic se-

quence,
Theorem 2: If

A=al,a2,...,apq

is bi-tonic, then each derived sequence A(J' q), wher: 1 & j S q, is bi-

tonic and

SIA

max [A(L q)]

e []

r
min LA(Z' q)] ,

min [A(3’ Q)] ,

1N

e [403 1 9] € e [0 9]

Procf: Consider A written in matrix form:

al 3.2 2.3 ap
E’Lp+l ap+2 a'p+3 a2p
2p+ 1 Bp+2 32p + 3 43p
Hq-Np+1 Hg-lp+2 2q-lp+3 ... 3pq
x
-132.

APPENDIX V

and obeserve that a circular permutation cf A is equivalent to a circular
permutation of the columns plus a circular permutation within each column.
The effect of a circular permutation within any column is cancelled when
the column is rearranged into ascending order. Hence, a circular per-
mutatios: of A causes a circular per:nutation within each derived sequence;
this does not affect the bi-tonic property and maximums and mirimums. It
is concluded that it is sufficient to prove the theorem for any circular per-

mutation of A,
[

l)

Pick a circular permutationof A, B = ¢ b2’ N bpq for which there
ic an integer j, with 1A§) g Pq. so that

2y 2 2 2 ¢ < < s
R R T R L VD IS

Let r and s be the integers defined by

rp+s=jandl§s§p.
B in matrix form is
/b, b ... b b
/ % 2 S P
/ Dp*l~l bp+2 bp*}-fs Tt DZp
brp‘fl brp+2 brp+s b(r+l)p
b b b b)
(q - p +1 (g-lp+2 ... “(qtllpts Pq o
-133.

B Ad *}

APPENDIX V

P
2

oy oM

! is easy to see that for any k, with 1 $ k & p, mMmax [bk' bp K b

2p + k'
.. b

. = maxib . b .. . so thati after each column
(q - l)p + k] i Plq - iip +
is rearranged :nto ascending order each term of row g the derived se-
1.
quence B'™ q) comes from row | or row q. The proof is divided into

three cases; 0 < r< gq~-1. - =0, andr = g - 1.

For 0 < r < g -~ 1, the inequalities

5, %3b, 2 22 b,
and
®lg - tip ~ 3 : ®a - 1ip + 2 B ®pg
noid, =so if hi&' s b(q S lptx for scme xl(wh)ere i = k*® . then bk .1 ES
b(q ’r,.‘p k-1 T'nis. together with B\c’-' @ - mfix [bi’ [(q - lip + 1].
™mIh oy, jl'q Cp - gj . .‘ . ., max (bp. 09‘;) implies that for some integer
t, where 0 £ t € p, B9 ¥ = bl' bZ' e e bt- X bt' h(q_ Dp+tsl’

lg-~lp-t=2. ... ’pg

Sig. gl .) . N .. .
Tor1 ¢t % p-1. 58 G- 9 ie bi-tonic and its minimun is

min [b[- b(q _ ')p -t l-! .

-—

Let C = b, 1 P L 20 . b, 1 . ; then C is bi-tonic with a maxi-
t - t ~ £ 19 -)p +t :
mum of
max !:33 T b(q _ ljp‘ t:}
and
2 -
bt N Dt + 17
b b .
t {q - Iip v+t~
2
Slg-lptts1 - .y
and
-134-
R - o T e M'W\ re—s

APPENDIX V

2 .-
Bla-1pttel - qg-1)p+t ~'

are established se min EB(q' q)] 2 max (C). Ift =0ort = p, B(q’ q)

is monotonic, hence bi-tonic, C is bi-tonic, and min [B(q' q)] g max {C).

Trke r = 0 case can be reduced to the case r = q - 1 by inverting the order
of the terms of B; this operation inverts each derived sequence and does

not affect the bi-tonic property, maximums and mirimums,

Forr =q-1,

v

2 2 > 2

1 2 "'_bp-"'-b(q-l)p+l~b(q-l)p+23...
2 5 < <
=t 1)p+s-l-b(q-l)p+s_b(q—l)p+s+l-

o
i
(=2
ins

Ne]
[

HA
A

1 b .
pPq - - Pq

If e £ b , then B(q’ q) = b,, b,, .. .t , which is monotonic, hence
Pq P 1* 72 D

bi-tonic, with a minimum ofb . C = bp s 1 bp + 20

. is bi-
Pq
toric with a maximum of max (bp iy bpq)’ so min EB‘q’ q)] 2 max (C).

Iibpq > bp’ then there is an integer t, s S¢ s p - 1, so that bt 2
<y (q: Q) _
Pg - p+t2™IP) TP _perer B = by Bye e By
b(q S l)p i+) b(o P bpq is Di-tonic with a minimum
of ’
rn E’t’ ®q-1)p+t+ 1]'
C=5b b, a2 o b’q p +t is bi-tonic with a maximum of
a L ‘ -
] o [ola,)] 2 .
masx [bt 1 b(q S+ a and again min [B § = max (C). This con-

cludes the caser = q -1,

In all three cases, B(q’ q) is HSi-tenicand if C = B - B(q’ q), C is bi-
tonic and min [B(q' q)] 2 max (C). C has (q - l)p terms. It is not hard
to see that the derived sequences ctt a- 1), clé a- 1), “ . ,C(q‘ -La-1)
of C will be circular permutations of gll: q), slé q)' RN B(q - L q)'

respectively. Hence, the above proof could be carried out on C to show

-135.

APPENDIX V

that cl2 -1 a-1) and therefore B9 - 1 D, pi.tonic and min
[C(q -la- lﬂémax[c .cla-1l a- l.f]. Therefore, min pla -1, q)] 2
ma.x[B - B(q’ Q) B(q - L qil. Iteration of this process proves theorem 2.

3. BI-TONIC SORTING OPERATORS

For any integer n > 1, let Nn be an operator that, when applied to any bi-
" tonic sequence of length n, causes the terms of it to be rearranged into
ascending order. Theorems 1 and 2 show that for any integers p > 1 and
q >1, Npq can be constructed from p applications of Nq and q applications

of Np' The operator equation is

N g(A) = N (& IN (A

bqlA) = Ny). N (A N [afl q’]prA(z'qﬂ. . .NP[A(q' al]

2, p A D - T T)

Or, us ingnnota.tion,

P q .
N (4) = U Ny(A g e | 1‘! n[al @],
1 =)} =

A special case is when p = qt - l.
t-1
q . q)
N t(A) = | I Nq(A_ t - 1) . I IN t - I[A(J, q)]'
4 i=1 v a j=1 %

Repeated application of this equaticn allows construction of N ¢ from Nq

operators. When q = &, 9
t-1

2
Nzt(A)) il, _ 1! NZ(Ai.zt U Nzt - 1{*‘“' 2] . NZ: - 1[A(2’ 2)].

L)
The NZ operator is a comparison of two numbers with an exchange if they
are in the wrong order (N2 is the same as» Qz in GER-II?S‘)).a The N ¢
operator will have et - ! N, operators. 2

o Pbid,

———

«136-

e e ——— e “r— ——‘”w” ~ . > .- -
d D lm . M N

APPENDIX V

A bi-tonic sequenrce can be formed from any two ascending sequences by
inverting one sequence and concatenating them. The bi-tonic sequence
then can be sorted by means of an N operator; the result i the merge of
the ascending sequences, Hence, the operator Nn is equivalent to Mm, K
of the referenced report for any m, k wherem + k = n.

In general, N uses more Qz cperators than Mm, K’ This is the
price to cbtain a meige operator that is dependent only on m + k and not

on m and k separately; for example, in the referenced report, M tal st-1
A
1

uses (t - 1)2t " " 4 1 operators but N ¢ has the advantage that it can be
2 .
used to merge any two ascending sequences whose combined length is 2t

where MZt -1

length, 2t - 1,

¢ . can only be used when both sequences have the same
, 2

If a sort of 2" numbers is conducted using N operators for merging, the
sort will use (n2 + n)Zn -2 Q2 operators whereas, in the referenced re-
port, only (nz -n+4)2" " 2. 1 Qz operators are required using M oper-

ators.

4. CONCLUSIONS

This report indicates how a merge operator N ¢ Can be constructed from
2
Qz operators that will merge any two ascending sequences whose combined

length is 2t N t is more versatile than M t of the referenced re-
2 m, 2" -m
port because of this but it uses slightly more Qz operators.

-137.

-

e R L

edr v

LMK 3

T T

[N

AFPPENDIX VI - BASIC ORGANIZATION OF MACHINE I

INTRODUCTION

This rcport describes a computer organization consisting of several
arithmetic units and several I/O channels interconnected by a multiaccess
self-sorting memory. All arithmetic units and I/O channels can access
the memory at the same time with no conflict, even when two or more
units access the same word. The sorting capability of the memory allows
fast sorting and searching of tables and a form of content addressing.
This capability, tegether with the pafallel arithmetic capability, gives the

processor a fast proceseging speed on most classes of problems.

THE PROBLEM OF ACCESSING DATA IN COMPUTER ORGANIZ ATIONS

Initially, higher processing speeds in digital computers were obtained
mostly by using faster components. Later, higher speeds were obtained
mostly by doing operations simultaneously that previously wer: done one
at a time; for example, the first computers suspended computations during
I/O operations while later machines do both simultaneously, The latest
large-scale processors, such as the IBM Stretch and the CDC-6600, allow

several I/O and arithmetic operations to take place simultaneously.

In the future, computers with a large number of simultaneously operating
arithmetic units (ALU's) and 1/O channels, perhaps in the hundreds, can
be expected. The major problem in such a computer is that of giving al

units fast access to the data that they need.

This problem exists in present-day computers where memories are di-
vided into several banks sc that while one channel is accessing one memory
bank other channels can be accessing other banks. When two or more

channels need access to the same memory bank, one of the channels is

-139-

T YO

|

o e

APPENDIX VI

perinitted accees and the others wait. It can be expected that the fre.
quency cof these conilicts will be very high if there are hundreds of chan-
nels, and thus this method does not appear to be promising. This is
especially true if data are retrieved by content rather than by address,
since a given item might be in any memory bank and a channel must look
in all the memory banks f{or the item. In this case, dividing the memory

into banks does little to increase the cverall processing speed,

When the class of prchlems to be soclved by a particular machine is re-
stricted, the machine can be tailored tv prevent memory conflicts, An
example of this is the SOLOMON computerl’ 4 where each prucessing
element is allowed access only to its four neighbors (right, ieft, up, down).
On certain problems with a rectangular structure (matrices, partial-
difference equatidns, etc.), the SOLOMON ccmnuter achieves a fast
processing speed because each processing element only needs access to

its four neighbors while for other problems the time spent :n shuffling
operands to the elements needing them will slow the processing speed

drastically.

The above discussion exhibits the need for a memory capable of perform-
ing hundreds of accesses simultaneously without conflicts. Ideally, no
conflicts should arise even when several channels want the same word.
This situation exists if several ALU's jump simultaneously to a common

subroutine such as a square root subroutine,

3. A MULTIACCESS SELF-SORTING MEMOPRY ORGANIZATION

a. Introduction

ly One way to> build a memory with m words and n access lines is to use a
i matrix or crossbar switch with mn rows and n columns. The amount of

equipment in such an arrangement is proportional to mn, a prohibitive

¢ aSuperior numbers in the text refer to references listed under Subhead 6 on
page 162.
| -140-
|
o T e R T T T W, T ML,
‘ 3 T

' 8

-

L

APPENDIX VI

number for memories of reasonable size. Another disadvantage of the
matrix i8 the fan-out and fan-in required of some of its elements; for
example, there is a gate for each word in memory loading down each
access line. The fan-out and fan-in can be reduced by "treeing" but this

increases .ue amount of equipment even more,

Fortunately, nther networks of elements exist that perform the same
fanction as the m-by-n crossbar; these use only m/2 logzn elements (ap-
proximately) and the fan-in and fan-out required of each element is con-
stant regardless of m and n. These networks are based on the sorting
and merging techniques discussed in GER-] 1759z and GER-1 18693 and

described below.

b. The Comparison Element

Each element in the sorting and merging networks has two inputs, A and
B, and two outputs, L and H, as shown in Figure VI-l, When two items
of data are presented on the inputs, the element compares the two items
as if they are numbers and presents the lower of the two on output L, and
the higher on output H. If the two items are equal, the element presents
their common value on both outputs. Either bit-serial or bit-parallel or
a serial-parallel form of data transmission is possible; however, serial

transmission shculd be done rnost-significant bit first,

Figure VI-2 shows a 13-NOR comparison element through which data are
transmitted one bit at a time, most-significaat bit first. Basically, this
element operates as follows, The B > A and A > B flip-flops are reset

by the reset i..put and then the data items are presented on A and B serially,
most-significant bit first, interspersed with clock pulses on the clock input,
With the flip-flcps reset, the L output is the logical product (AND) of A and
B, while H is the logical union (OR). If A = B, the clock pulse has no
effect. If A = 1and B = 0, the A > B flip-flop is set, If A = 0 and

B = 1, the B > A flip-flop is set. Ilf the B > A flip-flop is set, it re-

mains so until the next reset pulse. It changes the operation of the circuit

-

-141.- -

S g

APPENDIX VI

'

IFAZS,THENL:BANDH"A

1IF AL B THENL = AANDH = B

Figure IV-l - Symbol frr a Comparison Element

so that L = A and H = B and it inhibits the setting of the other flip-flop.

The operation is similar ii the A > B fiip-flop is set,

Comparison elements that compare more than one bit of each item at a
timme also are possible. Also, it is possible to add a shift-register stage
to each input or to each output so that the element has a temporary stor-

age function as well as a comparison function,

In the networks to be described, the L and H output of each element will

be connected to an A or B input of another element, hence the load on

the L and H outputs is fixed. This should make it possible to construct

these eleiments economically; for instance. the logic of Figure VI.2 could
~ be put on one integrated circuit chip so that the elements could be fabri-

g cated in patches.

c. M Merging Networks
m,n

The comparison elements can be combined to form a network that can

merge an ordered set of m items with an ordered set of n items to form

-142-

.
o e e - e asran ¢ s <. - - -
! - . - A e e . N —

APPENDIX VI

>+ @

[X

@r

8 > A)

—

&:

CLOCK

N S

nEsgyY

-14

3-

Figure V1.2 - A 13-NOR Comparison Element

APPENDIX VI

an crdered set of m + n items (Figure VI-3); that is, if m items arrive

over input lines a), a v a and n items arrive over bl’ bz, v e ey

2, e« o
) . . <
bﬂ simultaneously and if a; ES a, $... ¢ a_ and b, s b, ... %b,

then the m + n items will be sent cut on Cps Cpo v v ¢ rcordered

L4
m+n

. < < < L . -
8o that ¢; = €y 2 e oo e This is called an Mm, n merging net

work.

The construction of an M, merging network is based on the merging
technique described in Refereace 2. Basically, the network merges the
gset a, a3, ag, . .- with the ¢ e bl’ ‘b3, b5, . . . in one subnetwork while

merging the set a, & . with the set b b6’ . . . in another

41 a6) LI 2) b4!
subnetwork. The outputs of the two subnetworks are combined to form the

output Cpr S0 € The subnetworks in turn each consist of two

3"
subnetworks combined the same way, etc.
The construction is made more explicit in Figure VI-4, which shows how

two subnetworks are combined to form the larger merging network, Mm n
’

a
1 —— -,
a —C
—]
2 2
i
!
m e M
m n
by e NI TWORK

]
hn_‘.___L.' "—"“"——“’cnﬂ»n-\
‘ ‘
b - C
) < Cane
~ INPUTS {a‘ §a2: 83= 5%.1 Eam
b Cann s :
1 LI by ay 50y

OUTFUTS C < C, <C <o

Figure VI-3 - Symbgl for an M'n n Merging Newwork

-144-

ruwm—.h

APPENDIX VI

8 — %y
3 : \
T Mo o O
b, 272 ! B "]’—‘ca

S e
L A Cotn-a .
LR N\, -

ME,.‘! X A—Ch4n-2
2 2 8 H

m EVEN, n EVEN

a!- i—-————.—._c‘
by =
; M
8, —— m+1 n \ A Lr——cz
b 2 2)
By i H—C,
1
b= g." ¢
% .
ay———— d .
. [} *'L
=T Mm-1 ! A LF—Cnvn-3
———] 2 2 | .~
bz : B _H “m+n-2
b ; LI Combn-t
T g4 Cm+n
m GDD, n EVEN
1 c;
5] g
84 — Mm{»i a+d [B H"""C3
| ———— 2 2 7 ¢,
B Hr—0C
bn—————l-— :
% s '
l
Bd-——-———-——. N
H +
=T Mm-1 n-1 A O—C\ o
2
b2 ‘ 8 HL“’Cmn‘-s
b= A Lr——cm*n—z
b ———— B Hp~—C
h = +n-1
nt m 0DD. n ODD \. ot .
“m+n
Figure VI-4 - Construction of Mm n from Two Subnetworks and a Set
) T -
of Comparison Elerments Y

-145-

AT L Y PPN I - 1

R

gy

AFPENDIX Vi

There are four cases depending on the odd-even character c{ the numbers
m and n. The case where m is even and n 1s cdd is obtained frorn the
case where m is odd and n is ever simply by interchanging the two input
sets; hence, only three cases are iiiustrated. In all three cases, one
subnetwork receives all the even-indexed items of the input sets while

the other subnetwork receives the odd-indexed items. The respective
ocutputs oi the two subnetworks are compared by a set of comparison ele-
mente (one or twn of the subnetwork outputs bypass this stage as indi-

cated in Figure VI-4) and the outputs of these elements are the oulputs of

m, n
By applying the same procedure to the subnetworks and then to the sub-
subnetworks, etc., the construction is reduced toa setof M ., M

p. 1" T lLp

merging networks. An MD 1 network can be built by means of the fa-

miliar binary search technique; that is, the item bi that is to be merged
with a;, a5, ... ap is compared first with a_/z (or thereabou’s) and
& s

the lower of the two is merged with a.. a. .. -.a

1 .while the higher is

p/Z -1

merged with a a a_. Figure VI-> shows M

o/2+ 1" "o 10, 1

constructed this way as an example.

Another example, MIZ g is shown in Figure VI-6 with the subnetworks
and sub-subnetwsrks identified by the dotied Soxes. A proof that the above
merging networks dc in fact "raerge"” is given in Refereuce 2. (An M
network corresponds to the Mm operatcr of tais reference.)

Let h{m, n) be the number of cornparison elemei.ts in Mm ar An exact
expression for h(m, n) is hard to obtain but an idea of how fast it grows

s i a- ; -1 p+1 A

is indicated by n(Zp, 29 . 29) = (p+ Z)Zq - zP t+ i(ferq @ p 2 G).

Other special cases of h(in, n) are given in Reterence 2.

: : As can be seen from Figure VI-4, doubling the size of Mm= n adds one
‘ level of comparison elements to the network; hence, the longest path
through the network is proportional to the logarithm of the size of the
’ network; for example, the longest path in M goes through q
. 2P, 29 _ 0P

comparison elements.

i
3

-146.

APPENDIX VI

[EpE— [
l‘ 1
C
2
[a o
33-——1 - , 3
Cl
a C
L3 <
a
s C
a
6 6
b -
! ~
i ~7
2, — CS
a
2 — 3 CS
Ch‘)
%0 S

Figure VI-5 - M Merging Network

10, 1

When the comparison elements include {iip-flops for storage of data,
there is 2 one clock-inter+al delay in eacn eiement and therefore it is
necessary to add extra delays in the shorter paths of the network to
equalize the delayv in 2li p/*hs. Deiay elements or extra “"waste" com-
pavrison elements can be used for this purpose. As an example, an

M network then would have g levels, with each level having
2P, 29 .27

-1 .
29 comparison elements.

d. Bi-Tonic Merging Networks (N q)
- 2

One disadvantage of Mm' n is that it can merge only m items with n
items and thus. for instance, cannot {uliill a need to merge m + 1 items

with n - | items. There is another class of merging networks that has

the capability of merging lists of items, regardless of the number of e
items in each list, subject only to the constraint that the total number

of items to be merged is & power of two and rernains constant,

-147-

Ty

CB R S S AN T R NI U
J 1 4z 4z 4 x J X Jx —\“_IJ.)—
%
N 0.
= <_ Z
/7) Jp
r-t~t-f~-—2-A--—LLE -~ rt-- :-;IH/_. ittt Bl ol on
| 4 am gz T __ T J T X I Mc
" | ! | um
_] |
| ~ / / 1 \ /Af ~ | -
| ,V/ i | 5 s
| plend= = - - - /A 0 N D T L Ay QNN VO oo s =
Jx a1 I P eI N | o x o1 !
j i | | .___ _ | ﬁ (|)
)) l
L L i ! ! S
P L b b | N
P Lo il ! Pl ®
| b il ! “ __ P 5
i " 4 x m _] I ___" % | | g T b mu
by P Ak b I
(B . o i - I ! i
"IJ..l.. _——eadd 10 [N N b:r JNTNE IS ' [N R S
- — - — e e e o] — [S, U -— — e f— - — _— -
:] TP
m l._. 35 a8 .9 kd kl .b3 " a.. N a.b .bZ :1 ad %u bl l.m
&)
p

APPENDIX VI

A sequence of nurnbers, a,, a,,2 q i3 bi-tonic if it 18 monotonic
or if it consists of twc monotonic sequences, one ascending the other
descending, placed side by side (it does not matter whether the ascend-

ing sequence precedes the descending sequance or follows it). An N q
2
bi-tonic merging network such as shown in Figure VI-7 can rearrange

any bi-tonic sequence a, a3, ..., q into an ascending sequence. .
2

For any q 21, N q can be constructed as follows. if g = 1, N2 is simply

cone comparison element; ifq > 1, N q consists of two N networks
2 2

and 29 ° ! comparison elements connected as shown in Figure VI-8. A

q -1

proof that these networks function as stated is given in Reference 3.

N q will have q levels and each level will have 29 - ! comparison ele-
2
ments. All paths traverse q elements so there is no need to add extra

"waste" elements to equalize path lengths. To use N 4 as a merging net-
b |
&~

work, one cf the input sets should enter N _ in ascending order and the

2

other in descending order so that the total input set a5, 25, .+ .., a q is
. . 2
a bhi-tonic sequence.

e. Sorting Networks

The merging networks of Items 3, ¢ and 3, d above can be used to con-
struct sorting networks by means of the well-known sorting-by-merging
technique; for example, a network to sort 29 jtems consists of 27 ~ 1

comparison elements to arrange the items into 29 - ! ordered sequences
of length q followed by 29 ~ 2, M, , or N, networks to merge these se-

ouences into sequences of length 4, etc.

The total number of levels in a sorting network for 29 jtems is 1/2 g(q + 1),
If M-merging networks are used, the total number of elements 18 (q(' -g+4)
29 - 2 - 1, while if N-merging networks are used the number of elements

. q-2

is q(q + 1)2 .

-149- 2

T
L glid !

RO Y S -

APPENDIX VI

Bl 4

5
fd

i

R

g -
1 <
d ———
< S
a B c
3 ! t 3
1 qu §
] !
1 I
' i
a B e ——— [
29 - 20-1
%9 — Cq
INPUT a . a.a **°* . a . a 1S BI-TONIC
T2 3 29-1" 29 ‘
OUTPUT C . C . C_.-++.C . C_q 1S ASCENDING
1 2 29-1 21

Figure VI-7 - B:-Tonic Merging Network

A —— -
1 A L A
a -
3 ~AB H_——"\-z
a —_— A L
5 1 N 3
! N9 -1 i |
X . B & —
: . A Lp——
. /
/ B Hp——
=X P e \
A ——
z 1/
4 —~— A L presme—— —_
4
A — i 418 H e
6 ! 1 e
| Noq~ ; A Lp——
! L
—————t
g8 H c
‘-~ 29-2
1 A =
C".q‘l
{ Y D— B H S0
29- !

Figure VI-8 - Construction of N _ from Two N q-1 Networks and
2 2

Comparison Elements

-150-

APPENDIX VI

- ot o

t. Separating Networks (?\: q)
- - 2

A merging network combines two ordered sets of items into one ordered
set, It is also desirable to have a network for the inverse operation; that
is, a network tha: can separate an ord. red set of items into two ordered
sets (each item is marked with a flag bit to indicate the ordered set to

which it belongs).
N q (for q 2 1) is defined as a bi-tonic separating netwo-k. That is, if

2% items dl’ dZ’ e .o, d q 2Te presented over its inputs with d1 s d2

2 2
.24 q and if k of these items are flagged (0 = k £ 29), then N q
z Z

presents the k flagged items on outputs U7 VARIE RN ordered so that

e 2 e, 2, .. 2 € and presents the 29 . k unflagged items on e+ 1
$e % e
k+1 k+2 " 29’

<

€ 20 v ez ordered so that e

‘N _ can be constructed by an iterative process that is analogous tc the
2 : :
process used for constructing N q Observe from Figure VI.8 that each
2

element in the last level receives an item from the set al, a,, By o0 e

a
24
its B input. This suggests that each e.ement in the first level of N q
2
snould decide which of its two inputs nzeds an odd index in the final output,

.y onits A input and an item from the set Ay By, Aps w0 e azq on

el. € + v o, €, and which needs an even index,
- 2

From the definition of N , the following rules (where 1 £ £ Zq) can be
established: 2

1. Ifiis even and if the set{d., d .,d }
1" i+ 1 29

contains an even number of flagged itema, then the -

item di belongs in the set E = {32' €4 Cgr 0 0 o

e .
zq}

-151-

O N A T)

S8

Ly

%
I
S

APPENDIX Vi

‘2. If i is even and if the set {d.. d, B | }
TS O I | 24

contains an odd number of flagged items;, then the

item di belongs in the gset § = {el, €y €ch o,
e .
29 - 1}

3. Ifiisz odd, then di belongs in the complement to the
set containing di : that is, difE if di +1£0 and

di£0 ifdi+ 1£E

+ 1

To establish these rules, any integer i is considered as 1 = i z 29, Let

t be the number of flagged items ind_, di d q From the

2

definition of N , d.—ee, if d, is flagged and d.~—ee. if d, is unflagged.
2 1 t i 1 1+t 1

41:-"1

Therefore, i1 i is even. di belongs to E or 0 depending on whether t is
even or odd, respectively. This establishes rules | and 2. The case of

i odd is divided into four subcases, all satisfied by rule 3:

1. Ifd, is flagged and di 41 fiagged, then di—oe and

t

41T 0

2, If di is unflagged and cii r 1 unflagged, then di-ei .t
and dy L T L r

3. If di is flagged and di s 1 unflagged, then di--—uet
andd; | j==e;

4. If di is urflagged and di il flagged, then din-—.-ei -
and d, | je=we

i+1 t

~

An N q network (Figure VI-9) can be built from two N
{ 2 2
ceded by a set of separating elements. An 1\<"2 network is simpiy one sepa-

q -1 networks pre-

rating element. Each of the separating elements in the first level of N q
2

-152-

a Vo il 7 RS2 e < S S

APPENDIX VI

L O

d —

d ———H E

d
,——iL o

d ——{H

2d~147"1L ©
dq—n_E

-

N
29

£

Figure VI-9 - Construction o

-153-

zm._
3

A

e

3

o
i
o >4
1
Py

APPENDIX VI

receives two items of data (cli and di + 1) over its L and H inputs (the first
bit received in each item is its {lag bit). It also receives an indication

(fi) of whether the number of flagged items in the set di b2 di JETEEEEERR
dzq} isa odd or even. From rules 1, 2, and 3 it decides whether di €0 and
di + 1€E or diCE and di +
puts accordingly.

£ 0 and presents di and di s onits0 and E out-

i 1

The fi signals are generated in a network of exclusive-or circuits that re-
ceive the flag bits. Long ripple times can be avoided by using a "look-

s 4
ahead" structure similar to the carry-look-ahead structures of MacScrley.

g. A Multiaccess Memory Using Merging and Separating

The networks described in Items 3, c, d, 2, and f_above can be combined

to form a multiaccess memory {Figure VI-10). The elements in the N q
2
and N _networks incorporate snift-register stages that store the bits of
2

data in memory., The memory words recirculate the most-significant bits

first through the N q and N _ networks via the patns a, b, and c in Fig-
2 2
ure VI-i0. FEach mernory werd has an address field .n its most-significant

portion followed by a data field followed by a control field of p + 2 ONEs,
The words in memory are Kept in ascending order; that is, the word with
the highest address field is at the top of memory, etc. Words with equal
address fields are in adjacent jocations ordered by their cata fields (in
order that words be in algebraic order, a ONEs or TWOs complement
systemn is used with the sign-bit complemented). Empty words have zeroes
in all digits so that they fill the bottom portion of memory, The order is
kept in memory by sorting all new words each cvcle and merging them with

the memory words in N q
2

There are g levels in N q q levels in N o’ and one level in the transfer
2 2"
network so the recirculation paths hive a delay of Zq . | Clock pulses.

The word length is a multiple of 2q + | and transmission is done in serial-

parallel form, Words will recirculate twice per basic memory cycle and

-154-

T g 7 W“W T ——— e e

o
APPENDIX VI '
CHANNEL
CHANNEL RETURNS
REQUESTS ﬁ ‘
i
Mop e
i
e , K
RE-SORT
SORT 2p _ b v N
2p REQUESTS) OF 2 . @t
REQUESTS
— -~
ERASED
o f
WORDS
2P EMPTY
2P !
WOROS ey D
d 2k |
\] 8oTTOM BOTTOM
3 GATES
: SN)
‘ N
= J Nag TRANSFER 21
TOR ToP
.
< J
\ ~ w2/
2Pt
. _ : ot p el
Figure VI-10 - A Multiaccess Memory wity 29 0 2F Words and 2P
Requests
ol -

-184.

Einsaananals o STNC NPT

APPENDIX VI

thus the memory cycle time is 49 + 2 clock pulses, In operation, requests
arrive over the 2P input channels {j in Figure VI1-10)., These have the same
format as the memory words. There are three types of requests: WRITE,
READ, and READ AND ERASE, A WRITE request has ones in its control
field and has the addrees and data of the word to be writter in its address

and data fields, A write request does not overwrite old data but rather

%
“
IS

creates a new word, A READ request has the bits 0lxx . . . xx in its
control field where xx . . . xx is the channel number. A READ AND
ERASE request has the bits 10xx . . . xx in its control field where xx . . .
xx ie the channel number. The address an-s data fields of a READ or READ
AND ERASE request indicate the word to be read. If there is a word i~
memcry whose address and data fields agree with that cf the request, that
word is read; otherwise, the rnemory word that is immediately higher than
the request is read. As examples, if the data field of a request is all
zeros and if there is one memory word whose address agrees with the re-
quest, that memory word is read; if several words have addresses agree-
ing with the request, the one with the least data field i+ read, etc. A READ
AND ERASE request will erase a memory word after reading it. Any in-

active channe!l will have a request word of all zeros,

A sorting network orders the requests with the address field taking prece-

dence over the data field, etc. The ordered requests are presented to N q
>
over the e lines (Figure VI-10) with the highest request entering the bottom

of memoryv, the next lower request entering the nexi higher word, etc,

Concurrently, the memory words effter N over ¢ in ascending order,
2
The 2P empty words eater on the d lines., The input to N q ig a bi-tonic

2
sequence (Item 3, d above) and therefore g clock pulses later the merged

requests and memosy words start leaving N in ascending crder,
f 29
Merging continues until the control field starts to enter the transfer net.

work, Meanwhile, the address and data fields circulate througn N q and
2

-156-

APPENDIX VI | , Y

Yo

LR

R B

" gl

S LT L
k

back into N q via the k and c lines. The N a network is set so that no
2 2 : .
reordering of the words occurs. Also, the comparison elements of N

AN

q
are reset as the words re-enter N q S° that the ascending ox"‘d-errris prg-
served, 2 ,
At this noint in the memory cycle, the first two bits of cach control field |
are residing in the transfer aetwork. These bits are 00 for erﬁpty words,
U1 for READ requests, 10 fo, RYEAD AND ERASE requests, ard 11 for
memory worrds. The transfer :w.twork remembers this information and

changes these two bils to the code:;

01 for unerased memory words
10 for erased memory words and empty words
11 for READ and READ AND ERASE requests

The code change is mechanized easily. An erased memory word can be
distinguished from an unerased memory word since it is located immediate -
ly above a READ AND ERASE request. The first bit of the new code will

be a flag for N q to indicate the words to be removed {rom memory.
2

During the next few clock pulses the remainders of the control fields are
fed through the transfer network with no change. As the address and data
fields are fed through the transfer network, the address and data fields of
each READ and READ AND ERASE request are overwritten with the address

and data fields of the first memory word above the rzquest.

As (he words proceed through N qQ the flagged words aie separated from

2
the unflagged and exit at the bottom of N q The 23 - 2P * ! topmost words
2
enter N q again via the ¢ lines and a new memory cycle starts.

2
The 2P * ! bottornmost words contain all requests, all erased words and

. via the f lies. N

some empty words. They are put into NZP +) Zp + 1

-157.

1
i
i
)
i
:

WAL,

T o e S ¥ B s

i

Ak e

e T N

B)

APPENDIX V!

uses the second control bit as a flag o separate requests from erased
words.

The requests enter a sorting network (now with the contro) field in the

most-significant place), vhich resorts the requests by channel numbers.

The sorted requests enter an N network ivia i) along with the channel

7 2P 1
nurnbers (viz f). In this network, the comparison elements contain re-
verse paths along with forward paths. The comparisons are performed
on numbers in the forward paths but the switching action of each element
affects betn the forward paths and the reverse paths. By this means, the

request can be fed back on the correct channel via £.

Azsuming logic elements with 10-nsec propagation delays, a 30, 000-word
memory should have a memory cycle time of 8 ysec and an access timea of
16 psec {the access time is longer than the cycle time because of the time
spent in sorting and re-sorting the requests and becéause it includes the
time to transmit the full requested word), These times assume 1024 re-
quest channeis, Because 1024 requests can be processed every 8 usec,

an effective cycle time of 8 nsec is obtained.

PARALLEL COMPUTER ORGANIZATION

The multiaccess self-sorting memory of Item 3, g above can be used in

a parallel computer organizaiion. An example parallel processor might
have 300 arithmetic units, each with its own accumulator, quotient register,
index registers, instruction register, prograrn counter, and request chan-
nel to the memory, Because these arithmetic units car he mass produced,
it is expected that each would be considerably cheaper than an arithmetic

unit of a normal computer,

The instructinon set of each arithmetic unit is similar to that of a normal
computer: LOAD A, LOAD Q, STORE A, STORE Q, ADD, SUB, MULTI-
PLY, DIVIDE, SHIFT, TUMP, etc. There arc a few differences, however:

-158.

R~ R - j—

APPENDIX VI

'

Each instruction that reads an opsrand from memory
has two modiiying bits. One bit indicates whether
the operand should be erased irom memory or not;
that is, whether the read request sent to memory
shouid be READ or READ AND ERASE. The other
bit indicates whether the address of the operand
accepted from memory should agree with the re-
quested addr=ss or not; that is, since the memory
always returns an operand for each read reguest,
the operand address will be different from the re-
quested address if no word in memory has the re-
quested address. If this occurs, the second bit in-
dicates whether to reinitiate the request or whether
to usge the operand received from memory. Some

cases require both medes.

Each store instruction creates a new word in memo-
ry instead of overwriting an old word. This makes

it possible to store several words in memory with

the same address (a2 set of words can be ordered

simply by giving each item the same address).

Most instructions that read an operand from memo-

ry will fetch the minimum item if there is more than

one item with the same address. This is because

the data field of the READ request to memory con-

tains zero. It is also useful to be able to fetch a

werd in the middle of a list of iterns stored with the

game address. Thus, there should be some fetch

operations that use the contents of the accumulator

for the data field of the read request. These oper- ~ -
ations are similar to threshold searches in a nor-

mal computer, such as the CDC-1604, except that

-159-

APPENDIX V1

they require only one memory access time for execu-

tion regardless of the length of the table being searched.

4. Indirect addressing capability will be useful. Some
programs can be executed faster if one arithmetic
unit comnputes "addresses” while another refers to

these by indirect addressing.

5. Indexable jumps are useful since there will be cases
where several arithmetic units may be executing the
same subroutine ard the return addresses have to be

stored in the arithmetic units themselves.

6. Interrupting capability is useful so one "master"
arithmetic unit can control the others easily. It also
allows an arithmetic unit that is waiting for data to

be interrupted and started on a new prograra.

7. A "skip" on the presence or nonpresence of an ad-
dress in memory is useful for synchronizing arithme-

tic units.

The example processor might have hundreds of 1/O channels, each with its
own request channel to memory. There may also be a large backup store
to main memory that uses several request channels so that large biocks of
data can be moved in and out in parallel. With a large, fast-access back-
up store, a large main memory is not needed. The I/O equipment can be

controlled by reserving certain addresses for I/O control-word storage.

This example parallel processor will be able to perform a large class of

programs very fast, The sorting and searching capability allows fast data

™~ retrieval while the parallel arithmetic units allow programs to be executed
{ in parallel. For example. in the processing of a list structure, the struc-
ture can be gone through in parallel, with a different aritametic unit proc-

essing each branch and subbranch, etc. The parallel I/O channels allow
o fast data input and output, multiconsole arrangements, fast-access backup

-160-

APPENDIX VI

etores, etc. With error-detecting capability in the arithmetic units and
interrupt, it is possible to bypass failed arithmetic units without halting

computation, greatly reducing machine down time.

CONCLUSIONS

wn

This report shows how a fast multiaccess self-sorting mnemory can be
constructed. It also gives an example of a parallel processor organiza-
tion (Machine I) using this memory. Besides the parallel arithmetic ca-

pability, this crganization has the following features:

1. The sorting capability in memory allows fast sorting

and table searching.

2. The parallel /O chanrels allow fast data input and

output.
3. The organization utilizes content-addressing.

4. It is possible to bypass failed arithmetic units with-
out halting computation. This will result in greatly

reduced downtime.

5. A full complement of arithmetic units are not re-
quired for operation of the machine. Additional arith-
metic units can be added later without changing the
programs. As the number of arithmetic units in-
crease the machine time (assuming sufficient paral-

lelism in the program) will decrease.

6. The programmer does not need to assign tasks to
each arithmetic unit. A list of tasks to be performed
ia stored in memory, each with the same address.
The arithmetic unit(e) take the top item(s) from this
list.
The organization of the 2xample parallel processor may be modified if

-161.-

O--w

L4

|
\
|

APPENDIX VI

pregramming studies indicate the need for other features. The merging
networks in this paper may have an application in any communication
switching problem. They can be inade to resembie large crossbar switches

but they have fewer elements.

REFERENCES

1. Slotnick, D. L., et al: Solomon. Proceedings of the Fali Joint Com-
puter Conference, 1962,

2. GER-11759: A New Internal Sorting Method. Akron, Ohio, Goodyear
Aerospace Corporation, 29 September 19464,

3. GER-11869: Bi-Tonic Merging. Akrcn, Ohio, Goodyear Aerospace
Corporation, December 1964.

4. MacSoriey, O. E.: "High-Speed Arithmetic in Binary Computers. "

]

Proceedings of the IRE, January 1961, vol 49, no. 1.

-162.

APPENDIX VII - PARALLEL MERGING-SEPARATING MEMORIES

INTRODUCTION

In a multiprocessor using a sorting memory as a multiaccess memory,
the full sorting capability of the memory is not needed since most of the
memory words remain in the same order from one cycle to the next.
Only new additions, read requests, and erasures cause changes and
these are a small fraction of all the words in memery. This leads to
the concept of using a merging-separating memory in place of a com-
plete sorting memory. The cycle time of a sorting memory of 2" words
is 1/2n (n + 1) steps while that for a merging-separating memory of 2”
words is 2n + 2 steps. Thus, a faster cycle time should be expected in
a merging-separating memory (some of its steps wiil be longer but there

still will be a time advantage).

FUNCTIONAL DESCRIPTION OF A MERGING-SEPARATING MEMORY

A merging-separating memory cycle has four phases: merging, flagging,
separating, and exchanging (see Figure ViI-1). At the beginning of a
merging phase, the set of memory words is divided into two parts, the
higher containing the words of memory left from previous cycles arranged
in numerical order, and the lower containing new additions and read re-
quests arranged in order. In the merging phase, these two parts are
merged so the old memory words, new additions, and read requests form
one ordered list in memory. In the {lagging phase, the contents of the
requested memory words are transferred to the read requests, the read
requests are flagged, and the memory words to be erased (which are as-
sociated with read and erase requests) are flagged.

In the separating phase, the flagged words are separated from the un-
flagged, the unflagged memory words left in the higher part ¢f memory

-163.

L

APPENDIX VI

are arranged in order, and the flagged read requests and erasures left in

the lower part are arranged in order. Iu the exchanging phase, equipment
externzl {o the memory (not shown in Figure V1I-1) reads the read requests
and erasures and replaces the lower part of memory with a new ordered

iist of new additions and read requests for the next cycle.

The merging and separating phases are most easily realized if the lower
lists are arranged in an order opposite that of the upper lists. A bi-tonic
merge performs the merging and the separating is done by an "inverse"
network (see Appendix VI).

Let the fgords of the memory be indexed with 0, 1, 2, . . ., 2" .1
with 0 the indeX-of the word at the low end and 2" - 1 the index of the word
at the high end. In each step of the merging phase, the 2" words are
formed into 2" ~ ! pairs. The two words in each pair are compared and
if the word with the lower index is higher in magnitude than the word with
higher index, the two words are exchanged; otherwise, the pair is left

alone.

The pairing rule is explained easily if the indices are considered as written
in binary form, the bits of the indices are indexed by 1, 2, 3, . . ., n (1,
the most-significant bit and n, the least-significant bit), and the steps of
merging phase are indexed 1, 2, . . ., nin sequential order. The pair-
ing rule is: "On step k, word i is paired with word j if and only if bit k of
word i is not equal to bit k of word j and zll other corresponding bits of i

and j are equal. "

As an example, in a 16-word merging-separating memory, the first merg-

ing step treats the following eight pairs:

(0,8) (1,9) (2,10) (3,11) (4,12) (5,13) (6,14) (7,15).

=~

‘ The second merging step treats these pairs:
(0,4) (1,5) (2,6) (3,7) (8,12) (9,13) (10,14) (11,15),
The third merging step treats these pairs:

.
i -164-
|

t.....‘

W v AR T,
Y H

g

APPENDIX VI

(0,2) (1,3) (4,6) {5,7) (8,10) (9,11) (12, 14) (13,15).
The fourth merging step, these pairs:

(0,1) (2,3) (4,5) (6,7) (8,9} (10,11) (12,13) (14,15).

In each step of the separating phase, the 2™ words also are formed into
2 - 1 paire. The pairing rule is the reverse of that for the merging
phase; that is, the first separating step works with the same pairs as
those considered in the last merging step, the second separating step
corresponds to the next-to-the-last merging step, etc. The two words
in each pair may or may not be exchanged. The exchange rule is ex-

plaired as follows. For

WA

$

03i82% 1and0oSk&n-1,

let

nA

- . ne-l
Si’k-lg.1<,1 2

and the least-significant k bits of j equal the corresponding least-signifi-
cant k bits of i, ‘

As an example, if n = 3, then

So,o=l,2,3,4.5,6.7l So.l=2,4,6g S 2 = |4
Sl'0=2,3,4,5,6,7| s, =fas 7 sy L8
S, 0% |3 456 dl S, 1= | 6} 5, 5= |6
Sy 0 = |4 5 6 7| s3'1=s,7| S 2= I
S4,o=5'6'7| 54,1="' Se, 2%
S5, 0 = |6+ 7] s5, 1 = 17) Sg, 2 = #
S, 0= |7} Se, 1 = # 8,2 F
S1,0°%# S,,1°% S, 28 -

-165-

IASVHd ONIDNVHIX3I
T —

—

MOT MO . MON Mo
¥3aHO #3080
oNjaN3D530 ONIONZOSEA
NI QIONVNEY N1 S .S3INDIN
S2HNSYHI GNV av3s anvy
s1$3NO3y avIH SNOILIOGY M3IN

L] .

v !

Q399vd 0
ISuHd SQNOM QaSYH3 ISYHI H3a¥0 ASYHY - *
ONILVHVL IS ONIDO V4 ONIONIDSY ONIDNIN

/ CNV S1S3N03IN NI S153003M |

- aQw3sm FHL e !

HALIM S153003Y GV3YaNv x! w

— avay aNy SHOILIUUY MAN A.'.ll.l
‘SOMOM AHNOWINW

Figure VIi-l - Merging-Separating Memory Cycle

H30Ho ‘SNOIL1IGAY M3N onoman
- = 2 K
ONIONZOSY NI 'SAHOM ANOW3IW H30NC
SAHOM AHOWIN Gaouan ONIGNT TSV Ni B
SGHOM ANOW3N w
: €
i}
= Y
5 |
x .ﬁ
] ;
o HOIH HOIH HOIH HOIH ‘
-y ¥

-
4

APPE

T Bk AR ey) - g

A

RS

=

APPENDIX VII

where ¢ denotes an empty set. Let t o denote the number of flagged
] #
words with indices in 3, (if S, is empty, t. = 0). The exchange
i, k i, k i, ke o1
rule for the pair of words with indices m and m + 2 at separating

step k is: "Exchange m and m + Zk -1 ifand only ift_ . is odd."

As an example, suppose words 3, A, and 7 are flagged in an eight-word

memory. Then to' 0’ tl, o’ tz. 0’ and tb, 0 are odd and t3' 0’ t4. 0’

t
5. 7’ 0
(0, 1), (2, 3), and (6, 7) are exchanged and the words in pair (4, 5) are

0’ and t are_even. In the first separating step, the words in pairs

unchanged. The flagged words are now in 2, 6, and 7 80 4oy ty g

t P’ and t are odd and to)’ tb, ! and t.,' 1 are even,

3, 1" 4, 5, 1
In the second separating step, the words in pairs (1, 3), (4, 6), and (5, 7)

are exchanged and the words in pair (0, 2) are unchanged. The {lagged
words are now in 2, 4, and 5 so tO, 2 and tl. 2 are odd, tz. 2 t3, 2

and t are even, In the third separating step,

tg, 20 %5, 2 %6, 2° 7, 2
the words in pairs (0, 4) and (1, 5) are exchanged and the words in pairs
(2, 6) and (3, 7) are unchanged. Figure VII-2 shows the interchanges
performed (underlined indices indicate the flagged words). In this ex-
ample, the three flagged words were moved to the low e¢nd of memeory
with their order reversed aad the unflagged words were moved to the

high end with their order preserved.

3, PARALLEL MEMORY

In the parallel form of a merging-separating memaory, there are haif as
many word stores as words. Each word store contains storage for two
words plus the logic for the comparing, flagging, and separating func-

tione,

In the n merging + n separating stepd of & 2".word memary, words shift
between the word stores so that each of the desired pairs ie formed, The
words can be arranged in memory so that the same wirss can be used be-
tween each pair of cunsecutive steps of the merge. An example is shown
in Figures VII-3 and VII-4. In Figure V1.3, the eight paire in each of the

~i67-

APPENDIX VII

IN

\/
A

—_—

I~
s
»

Novs
3
5
¥
.

/
N

/
/.

a

) T 1 1 7
BEFORE AFTER AFTER AFTER
SEPARATION FIRST STEP SECOND STEP LAST STEP

Tigure VII-2 - Example of Word Interchanges

four steps of a 16-word merge are arranged so that the wiring patterns
between all pairs of consecutive steps are identical; in Figure VII-4,

q elements are shown interconnected so that they can be used to per-
form the same function as the 32 eirments of Figure VII.3,

If the words in a 2" -word memory are indexed by 0, 1, 2, . . ., 2"~ !

and if each locatisn ie given the same index as the word it contains in the
last merging step, then the location of any word at any step is given by
the rule: "Word i is in location j at step k if the n-bit binary representa-
tion of j is the binary representation of i shifted right end-around n - k

places. ~

The wiring ruie between the locations is: "Location i feeds location j if
f the n-bit binary representation of j i¢ the same as that fo: i shifted le:t
! one place end-around." This shows the wiring necessary for the merg-

ing phase,

Since the steps cf the separating phase are in the reverse order, the wires

-i68-

L e e W —— ogg—
» -

APPENDIX VII

o = 0 0 0
8 4 2 1
1 \N— 8 s < 2
9 12 X \\ 3
2 \ 1 \ 8 '}
10 \ ’ s \ 10 5
3 ~ 9 \ 12 ‘ \\.- 'y
" | ‘ 13 13 /— 7
4 | 2 1 8
12 ‘ & 3 9
5 0 7 \-. 5 10
13 ‘ ——tt 14 + b 1
6 | 3 9 ‘2
14 T] 1 e
7 1 .../ \—— 19 ——/ \. 14
15 15 -] 18 15

Figure VII-3 - Sixteen-Word Merge Arranged for Same Wiring
Pattern between Kach Pair of Levels

-169-

APPENDIX VII

-
=
-

< Figure VII-4 - Eight-Element Version of 16-Word Merge

-170-

B B e - »—\%_ - - -

APPENDIX VI

"3ASVHG ONIOYIN IHL NI [SQ33d 1 SINNSSY I ianYyX3d €

"3ASVHd DONILVEHVAIS 3HL SNIHNNA ««NO.. St TTYNOIS TOMINOD S °Z

TASVHG ONIONIW JHL ONIFNO .NO.: Sl TI¥VNOIS TOHINCDO W '}

‘S3LON

| LNO N}

[NOILYDON

| LNO NI

N0 NI

-
NOILVYIO

t NOIL VD0

4ANO NI
t-r
NOILVYDIO™T

2 .G,t.‘lt.ii»ﬁ; g

Merging and Separating

ires ior

-171-

Figure VII-5 - Example of Use of Same W

APPENDIX VIi

— s,
s L

e

cLock H .
i

sO— }

al

t] 6666

i MR mx SR sx

Figure VII-6 - Digit Store (itﬁ'h Digits in an Element)

u -172-

APPENDIX VII

S a
; <7
SR
L
-~ @
o @
¢ N
: r
;% ._—-T*—_ — Qo
' @
¢
o @ 1
- @ §

Figure VII-7 -~ p-Group for the Comparison Circuit

-173-

SAMOLS LIDIG NIV OL

xS

Fzdl KOS ONi 4

Yy @— 8 40 118 Ov14

m
% @ H v 40 Lid 9714

xs

[xs @ 4 q
XS @ }
) o—

8 < vi X

xw

)

dNOMO-¥

3

L
—n N. Nm
SANOYS-€ \\ \\
L 9

§ & v
4 2]

///

—u —w Nh. Nwﬁ_ mu . + °
2T 77T, 770N 77T
Iy 2y St 9€,

-

AL

SHAMCLS LISIQ

APPENDIX VII

Vi

i

L

0

mw

5

S e e SR g

Figure VII-8 - Word Store for 36-Bit Words (3-Level Cascade)

-174-

TR IUREUORMAL SO 20

APPENDIX VIl

X0 O ¢
%00~ * O X
YOO""""‘"' H
Yo O . —0 X
-~
1+
x,0-
;‘C | < r—? OY
¥, O—
—OY

INEN

Figure VII-9 - Ring-Sum Element

-175-

APPENDIX VII

' WORD STORES RING-SUM ELEMENTS

Low
END

UNUSED

Cl
CETAIL
e ————— -
¢+ WORD RING-SUM
I STORE ELEMENT i
I
: S1%]
| 2 _ xte,
f X
| ¢ o i
SX pama—1yY -]
: - —O x e |
SX poo—qY
, 170 !
' Fi —)(‘ |
_‘, - M ol
| i sam ." |
| v I
1 -
| - Y p- '
IRk
| 1‘ ! |
| |
|
]

i UNUSED
\
i N \~ ———————— /I

Figure VII-10 - Ring-Sum Tree for 64-Word Memory

-176-

APPENDIX V11

for separating are given by: "Location i feeds location j if the n-bit rep-
resentation of j is the same as that for i shifted right one place end-
around. " These would be the same wires as those for merging except
information travels through them in the reverse direction. To simplify
wiring, the same wires may be used for both phases, with the correct
input and output gates being turned on to direct the information correctly
(Figure VII-5). For parallei word transfer, the single wires in Figure
VII-5 actually are busses,

Each word store consists of a number of digit stores plus interconnecting
logic. A digit store is shown in Figure VII-6. It stores one digit of each
number, a, and bi’ respectively, in shift register stages. The outputs
g = 3 bi and t;i =a v bi are used in the comparison logic of the ele-
ment. The combined input-outputs li' e o) and hi connect to the cor-
responding input-outputs of other elements. These connections are shown

in the following rules (the elements are numbered 0, 1, 2, . . ., 2n - 1- 1):

1. If kis even, then e of element k connects to 1i of
element 1/2k and o, of element k connects to li of

1/2k + 2" " 2,

2. If kis odd, then e of element k connects to hi of

element 1/2(k - 1) and o, of element k conriects to

h, of element 1/2(k - 1) + 2" ~ Z.
3. ke 2' then li of element k connects to e, of
element 2k and l'xll of element k connects tc ‘i of ele-
mant 2k + 1.
© 4 Hk2?

. then li of element k connects to o, of

1

element 2k - 2"~ ' and hi of element k connects to
1

o, of element 2k - 2"

The other variatles in Yigure VII-6 are M, which is "on" in the merging
phase; S, which is "on" in the separating phase; X, which is "on" if the
two words should be exchanged (for example, X = 1if A > B in the merg-
ing phase); and X, which is "on" if the words should not be exchanged.

-177

APPENDIX VI

The comparison logic and control signals M, S, MX, MX, SX, and SX in .
terconnect the digit stores of a particular element. A fast comparison
circuit can be realized with a "look-ahead" circuit, This technique is
similar to the "carry look-ahead" techniquea and consists of a grouping
of the logic in 2-groups or 3-groups, etc. For a comparison circuit, a
p-group (for any p 2 2) is shown in Figure VII-7. It requires p "and"
gates with atotalof 2 +3+, .. tp+p = l/Z(p2 + 3p - 2) gate inputs,
These groups are cascaded to form the comparison logic; Figure VII-8
shows an example of the cascade for 36-bit words. The G output of the

4-group is "on" if and only if A > B. When it is "on," it causes an ex-
change of A and B on the outputs (during the merging phase) by means of
MX; if it is "off,” MX is "on" (during merging} to cause an output with no
exchange. The T outputs <f the 4-group and the right-most 3-groups on
each level can be eliminated as they are not used. This is also true of t

in the first digit store,

In the separating phase, the flag bits of A and B in each word store are
fed into a ring-sum tree. The ring-sum tree generates the control sig-
nals SX and SX for each word store. It consists of 2" - 2 ring-sum ele-
ments (Figure ViI-9), each of which consists of two exclusive-or circuits,
each generating a irue and complement cutput. The logical equations (for

¢ = Q) are:

X = x.0x

yO:xOY,and

Yy T Y .
~ When C = 1, Y = 0 and the logic 13 changed to force Yo © 0. Cis acon-
¥ trol signal used to break the ring-sum tree into srmaller pieces. An ex-

ample ring-rum tree for a 64-word memory is showr in Figure VII-10.

AMacSorley, O. E.: "High-Speed Arithmetic in Binary Computers. " Proc.
IRE, Vol 49, No. 1, January 1961.

-178-

- ~is -

;

i

i

.|

.
*
, R T W e g sy T g P o “W : - g
v .) LI B ©

1‘

APPENDIX vl

In some places on the figure, the complementary signals are not indicated;
in <11 connections between ring-sum elements, the X and X outputs fsed

X, and i'o of another element, respectively, or they feed X and il ¢’ an-
other element, Similarly, the Yo and 70 (yl and il) outputs feed Y and Y
of another element, respectively. During the first separating step, S is
turned on and Cl’ CZ' C3. C4, and C5 are left off. In the second step,
CJl is turned on (S is left on): this disconnects the ring-sum tree into two
parts. In the third step, Cl’ Cz, and S are "on, " disconnecting the tree
into four parts. In the fourth step, Cl' CZ’ C3, and S are "on" and the
tree is in eight parts, Cl. CZ' C3, C4. and S are "on" in the fifth step,
1r G20 C3 Gy
CS' and S are "on" and the tree is in 32 parts. The way words are trans-

disconnecting the tree into 16 parts. In the last step, C C
ferred hetween the steps and the way control signals a: : turned on causes
each word store to receive the correct exchange signals, SX and SX (see

the separating phase discussion in Item 2 above).

On the first separating step, the longest path in the ring-sum tree for 2"
words goes through 2n - 1 logic elements; on the second step, it goes
through 2n - 3 elements; on the third step it goes through 2n 5 .l >ments,
etc. To decrease the cycle time to a minirnum, a special clock with a
leng interval can be used during the first separating step, a shorter in-

terval during the second separating step, etc.

In the flagging phase, the words tn be separated are flagged and the con-
tents of words are transferred to the read requests. There may be sev-
eral read reg -ests bun-hed riading the same word. It would take un in-
ordinate amount of logic to transfer the word in parailel to all such re-
quests so in this situation only the topmost raad request (the request just
below the word being read) receives the data., After the separating phase,
all such read re-uests will still be togeiher and the topmost request can
then send the data to all the others,

A control [ield in the low-order bits of each ﬁrord idantifies the word as a

temory word, a read request, a read and erase request, or an eras

-179.

APPENDIX VII

limit. For read requests and read and erase requests, the control field
also identifies the particular output channel involved, It is desirable to
arrange the control field codes so that for erase limits they are above
(when read as binary numbers) those for memory words which in turn
are above those for ,the read requests and the read and erase requests.

A good control field code then is:

, Cl C2 C3 . .. Cn

g 1 1 x X . . . x X Erase limit

g 1 0 x x . . . X x Memory word

; 0 1 Channel number Read and erase request
§ 0 O Channel number Read request

In the flagging phase, the following are to be flagged:
1. Erase limits
2. Read and erase requests
3. Read requests

4. Memory words just above read

and erase requests,

If C2 is picked for the flag, then the substitution for the flag bit of the itn
word during flagging is:

c,Mec

2 2

6y g @ v [c b - Ve, - 1]

Cl is left alone so that it can be used to separate the requests from the
erasures and erase limits after all theae words have been separated from

the other memory words,

The memosy words can be tran:ferred to read requests by writing the
whole memory word (except its control field) into the read request, leav-

ing the read request control field alone (the read request is just below the

-180-

-
“ “ R TN i 3 s Tk R o ‘_" e b e B
b it b4 » ‘G—,-‘* ’ oy -

APPENDIX VII

wmmwwwf *

memory wbrd). Parallel transfer gates from the A word of each word
store to the B word of the same word store and gates from the B word of
each word sicre to the A word of the next lower word store are needed
for this, This involves much wiring.

The ‘lagging phase takes one time step. The exchange phase consists of
one time step during which all separated words are transferred out of
memory and replaced with new requests, memory words, or blank words.

Checks are made to inhibit writing over any memory word.

1.
3
|
H
H

CONCI.USIONS

A parallel merging-separating memory has Leen deacribed. It has the
advantage over a complete sorting memory of taking less time steps. Its
operation is faster than a serial memory because whole words are treated
at once; this time advantage is about 2 to 1. The wiring will be more
complex than in a serial memory and the cost will be higher because of
this and also because there are many more different kinds of elements

than in a serial memory.

-181.

. i aiE £ it imiion

APPENDIX VIII - PROBLEM SELECTION FOR A PARALLEL PROCESSOR

1. INTRODUCTION

This appendix presents some of the analytical results obtained in the se-
lection of problems for implementation on a parallel processor (see Ap-
pendix VI). Parallel execution of the following mathematical methods is
discussed: Jacobi's method of eigenvalue determination, relaxation solu-
tion of a system of linear algebraic equations, and numerical solution of
Laplace's equation.

2. JACOBI'S METHOD
a, _Dg cussion
(1) General

Jacobi's method is a mathematical technique for finding the eigenvalues
and eigenvectors of a real symmetric matrix. The method is based on
the following well-kncwn theorem from matrix aigebra.

(2) Theorem |

Let A = (‘ij) be an n X n real symmetric matrix, Then there exists an
orthogonal matrix U such that

U'AU = DAL Ay, ooy A
% =D, (1)
" where U' denctes the transpose of U; D = D(A;, A,, . . ., A) denotes a
i : diagonal matrix; and | 4\1' (i =1,2, ..., n)are the eigenvalues of
i A. Since in (1) U is orthogonal, ”
AU = UD (2)

[
and hence the columns of U are the sigenvectors of A, é
-183. z

}
.
1

B T

SEETE L T - o

APPENDIX “VIII

Jacobi's method specifies the construction of a sequence of orthogonal
matrices Tl' TZ' o oo 'I’k such that

. T coew T

i S AT,T,... T, =C, (3)

) 172 B
where C in an n X n matrix whose off-dizgonal elements are arbitrarily
close tc zero and whose diagonal elemenis are arbitrarily close to the

eigenvalues of A, The columns of the matrix Tsz .0 Tk are then ar-
bitrarily close to the eigenvectors of A.

The sequence of matrices Tl' Tz, e Tk is constructed as follows.
(3. Construction of T1

From the elemerts above the main diagonal of A sulect the one of largest
magnitude, say a5 Then define

-a..
tan 20 = T"TLT) (4)

I(.,‘ii - ‘.ij)
Letting

cos 6

[¢]
(1]

ein 6

Tl is defined as

'cifptqniorplqaj
sifp =i, g3}

T, = (t_), wheret =4 -0ifp =z j,q =1 (6)

1 M M
litp=qfior}

| 0 otherwise

More simply,

-184-

R U

¢ e s ST s ‘PZM-?,:—‘J'&W*?‘M‘D'rmﬁva s
APPENDIX ViII
i J
1
1
c s i
H
1
'I‘1 = . (M)
-8 c J
1
|
where the unindicated terms are zeros,
U in (4) the following are set:
-gij = A
and) (8)
1/.2 2
26\1 "u) A
and W is defined
W * sgnip) m—bee , (9
22wt
-185-

-

on S

TR e Ty e e

cui

APPEZNDIX VI

lifx > C

where sgn(x}) = { 0ifx = 0,

-lifx 0

3 then one can write:

; § s = 8in @ = Y

% \/2(l+ Vl-wz)
and (10)
ﬁ ¢ =cos @ = V1 - sin® e

‘ f Hence, the computation of s and c involves only algebraic relationships

and no computation of trigonometric functions is required.

(4) Construction of ’I‘k +1

Assuming T, T,, « . . Ty have beer computed, define
- t ot 1
A =TT .. TYATT,. .. T, . (11)

Then select from the elements above the main diagonal of Ak’ the one of
largest magnitude, and calculate the elements of T}_ +1 in the fashion
specified by (4) through (10).

That matrices 'I'i of the type (7) are orthogonal is easily seen by forming

]
’I‘i 'I'i = I, It is also evident that 'I‘k ‘1 Ak Tk sy 82 real symmetric

matrix if A‘k is, for if it is assumed that A is real and symmetric, Tl‘ A
Tl is obviously real, Further,

Y (T AT))' =T, AT =7 AT (12)

1 1 1 1’

and hence Tl' AT, is symmetric, The general case follows by induction,

1
It is easily seen that premultiplving a matrix Ak by 'I‘l'< , 1 results in a

)

o . . .th th
T , . .
« matrix "I‘k +1 Ak that is identical to A] except inthei™ and j rows,

-186-

APPENDIX VIII

I Rachininy e st it ciuild

i and j being determined by the above diagonal term of Ak having the largest
magnitude. Similarly, postmultiplying a matrix 'I‘l'c +1 Ak by Tk y 1 Te-
sults in a rmatrix ’I‘l'(41 Ak Tk 41 ° Ak 41 that is identizal to Ti(‘1 Ak
except in tha it'h and jth cclumns, A iittle arithmetic will show that the i, j
and j, i elements of Ak , | aTe zero. It may be, of course, that the "i, j"
and "j, i" spots previously zeroed out in forming A, no longer will be zero

k
A
However, if tc(A) is defired as the sum of the squares of the oft-diagcnal

terms of the rnatrix Al’ it can be shownl'a that

a,) Ay (13)

and hence the sequence A, Al' 20 0 Ak generated by the Jacobi meth-
od coverges to D = D(Al.)\2. o An). the diagonal matrix of the eigen-
values of A, and that the coiumuns of T, T, . . . T, converge to the eigen-

172 k
vectors of A,

l_)_. Parallel Execution

The method of Jacob®, as outlined above, lends itself well to parallei com-
putation. Matrix operations are, of course, well suited for parallel com-
putation, As an example, consider the product U = AB of two matrices

A = (a‘ij), B = (bij)' Now in C, the i, | element is

n
Ci_‘j = E cikbkj . (14)
k =1

That is, the elermnent in the i, j spot of C is just the dot product of the 1m

row of A and the Jth column of B. Clearly, given A and B, eaci of the
elements of C may be calculated independently of the others, And for each

element of C the multiplications involved in the correspondirg dot product

3Superior numbers in the text refer to references under Subhead 7 or. Page 220.

- lu?-

W it v - [,
] " -

APPENDIX VI

may be done in parailel and the summing involved may be treed. The ex-

tensive matrix operations involved in the Jacobi method are then well

suited to parallel computation.

There are two computational aspects of the Jacobi method for which capa-
bilities resident in parallel processors having sorting mamories are
ideally suited (sae Appendix VI). These aspects are (1) the determina-
tion for a matrix A of the above diagonal element of largest magnitude,

and (2) the test for convergence, namely,

1A <€ {15)

for some given zpsilon.

The test (15) for convergerice raay be repliced by requiring tha! the mag-
nitude of the largest off-diagonal elument of Ai be less than some given

epsilon,

Since each of the two computational aspects cited :bove involves tha de-
termination of the largest member of a given s2et of elements, the rapid
sort capability of Machines I ¢r I {(Appendixes VI and XV) may be profit-

ably brought io bear in their execution,

3. THE RELAXATICN TECHNIQUX
a, Discuuzo_rl

Relaxation i& a term originally apvlied by R, V. Southwel: to a class of
iterative methods for solving a sysiem of linsar equations. The term

has since come .o connote a hroad class of muthods ror the z2pproximate
reformulation of physical problems in terms of syutems of linear equa-
tions to be solved. An example of this expanded use of the te . relaxa-
tion is offered under Item 4 below where « numericai tolution to Laplace's
eguation is discussed. In the strict seuxse. the 1elaxation technique pro-
vides a method for- solving a svetum of linear algebraic aq.:ations ex-

. pressed in matrix tarrn as

-188-

e apnp—— v ———

APPENDIX VIiI

AX = B, {16)

where A is an n X n coefficient matrix of known constants, X = (xl, Xy
Xao « v s xn) is a column vector of unknowns, and B = (bl' bZ’ . e e
bn) is 2 column vector of known constants,

The relaxation fechnique is an iterative procedure that specifies a se-
i' le N] x

tions that converge to the solution vector X. Discussions ot necessary

PR SR | i
quence X K where Xi = (xl, Xopp v - s zn) of approxima-
and sufficient conditions for convergence may be found ir references 1
through 4. The technique assumes an initial guess, Xl, and computes

successively vectors Ri = (ril. r;, e e e r;) of "residuals" definced as
R. = B - AX, {17)
1 1

fori = 1.2, ..., k.

T“e residual vector Ri provides a measure of the closeness of the approxi-
mation }'{i to X. Basea on a residual vector Ri' the relaxation technique

specifies a new approximation Xi . The process continves until the

1
elements of the residual vector are sufficieatly close to zero to satiefy

a pre-established convergence criterion such as Ri . Ri <f 2

m:.x ﬂriﬂ(£

. . , i i i .
Given a residual vectior Zil ¥ “1' SN rn). th. relaxation procadure
L

specifiet a new apprcximalion)Ci .y O the form

1+ 2

X ., X +A U , (18)
N 0

. th
where Up 18 the p " coordinate vector, namalv

U o= (8 ,8,. .., . 19

P { 1p' 32p snp: {18)

and A_is a constant to be chossr such that the Pt.\ slemer:, :;* ‘. af the

residual vector Ri vl " B.A)(i Y is zero. P may b: apecified in a
-189.

e, A N e N

=

APPENDIX VIII

cyclic order, for example in terms any permutation of the integers 1, 2,
.« + ., n (n being the order of the matrix A), or according to some prede-
termined critericn. The process of choosing Xi +1
of a cyclic determination of p i8 known as the Gauss-Seidel iteration.

=X, +XA U_interms
1 P

More rapid convergence of the relaxaticn technique is obtained if Ap is

3]
s
o
.
o
f
:
=¥
B
X
Tt

chosen so that

) "2 (1) o

rather than specifying p in a cyclic fashion,

It is possible to determine Ap’ where p 1, 2, . . ., n, as follows: For

a given p and present approgiimation Xi = (xll, .;, « v e x;), the require-

ment that r;+ ! = C means that if the residual vector Ri .1 = (x‘l1 * 1,
i+1 1i+1
r, » T) then the dot product Ri 41 Up = 0.
N’)WRi+1 = B-AXi_‘_lamciXi+l = Xi+,\pUp.
Hence (B - A)‘.i + 1) . Up = 0 and
n
2 i
bp] apkx'k
k =1
a
P PP
Letting
= : {
A ().1. 4\2. v An)) (22)
then
: o fiy iy i
b A= (rl/a“, Y P TIRET rn/ann)' (23)

At each stage cf the relaxation iteration, & new approximation to the solu-
tion vector X is specified in terms of the last approximation and the ele-

ment of (23) having maximum magnitude,

i

-190-

- - (&.

APPENDIX VIII

The rate of convergence of the relaxation process may be increased by
modifying the value of)‘p used in the iteration, If Ap is replaced by

*
- , 24
Ap wAp (24)
it is known that for

0Ocwce?2 (25)

convergence of 2 relaxation iteration is preserved. The factor w is called
an acceleration parameter or relaxation factor. The term under [over] re-
laxation is applied - the case where 0 < w < 1[I < w< 2] (It must be
stressed he s that the acceleration parameter w is used to accelerate, nct
establish, convergence of a relaxation iteration.) The central problem
asscciated with the use of an acceleration parameter w is to determine

the optimal value, w for w; that is, the value of w for which the con-

opt’
vergence rate of the relaxation iteration is maximized. The thecretical

det:rmination of wopt for the relaxation solution cf a system of equations

expresiea in matrix form as
AX = B (26)

proceeds as follows. Let the matrix A be representsd as
A= (EDF \) 27)
where E, D, and F are lower triangular, diagonal, and upper triangular
matrices. Defining a matrix H as
Hec-D+EF (29

and denoting by S{H) the spectrum of H, then compute

b= max [S(H)]. (30)

That ie, g is the eigenvalue of H having the largest magnitude. If the re-
laxation iteration is convergent for the system (26), then |u] < 1 (ref 2)

and wopt may be computed as

-191-

APPENDIX VIIT

- 2) (31)

w
oot " T 1. ;72

Observe that implemacntation of the derivation of wopt presented above in-
volves the solation of an eigenvalue problem that may be at least as diffi-
cult as the original problem, Forsythe3 makes the discouraging observa-
tion that no generaily acceptable technique for accurately approximating
wopt as the relaxation ite-ration proceeds is known. Househclder™ recently
confirmed this observation.

b, Parallel Execution

The relaxation method outlined above involves the repeated e:xtecution of
the operations of matrix multiplication and addition, multiplication of a
vector by a scalar, and searchiag a set for the elemenrt of largest magni-
tude. As was pointed out under item 2, b above, these ope “ations are well
suited to parallel execution, and the operation of finding in a set the ele-
ment of largest magnitude may be rapidly accomplished on a parallel

processor having sorting capability.

NUMERICAL SOLUTION TO LAPLACE'S EQUATION
a. Discussion

The numerical solution of Laplace's equation over a rectangular region R
with boundary 'R is discussec here. Assume that R is partitioned by an
equally spaced rectangular mesh and that Dirichlet boundary conditions
are specified. Given a functicn u(x. y) for which Laplace's equation ob-

tains over R, write

azu+az‘““ﬂ 32
o a (32)

Letting the interval for the mesh over R be dernoted by A, the partial

derivatives for u(x, y) may be approximated by

-'192-

APPENDIX VIII

du _ u(x +4, y)-ulx, y}
A

ox
du _ u(x, y +A) - u(x, y
o A
ay
2 p (33)
v _ u(x+ 4, y)-2u(x, y)+ulx-4, vy
2 AZ
0x

32u u(x, y + A) - 2u(x, y) + ulx, y - A)
A?'

4

and then the difference equation couanterpart of (32) may be written as

u(x, y) = %[u(x +4, y)+ulx -4, yy+ulx, yt+Aa)tulx, y- A)J} . (34)

Equation (24) approximates u{x, y) at each interior mesh point of R by the
average of "north, south, east, west neighbors."” Other difference equa-

tion approximations to u(x, y) at interior points or R are

u{x, v) =%[u(x+A, y+Aytulx+A, y-4A)ytulx -4, y+A)+
Y
ulx - A, y - A)] (35)
and
a(x, y) =%u(x+A, v} Fulx - A, y) +ulx, y + A) +ulx, y-A‘)J+

—Z-l-ﬁlru(x+A,y+A)+u(x+A,y—A)+u(x-A,y+A)+u(x-A,y~A)].

(36)

Approximations (34) and (35) are often referred to as "five-point" formu-
las and (36) as a "nine-point" formula. It is easily seen that approxima-
tions (34}, (35, and {ir) represent u(x, y) in terms of +, X, and J pat-
terns of neighbors, respectively, and they are referred to here as approxi-

mations A, B, and C,
-193.

PRI RO NN VT 1.;;;;

APPENDIX VIII

An easily estabiished relation between approximations A, B, and C[(34),
{35), and (36)]is given by

2 &a4 1
C=3A+xB. (37)

Iterative solutions to Laplace's equation based on approximations A, B,
3 . .
or © converge and often are called "relaxation solutions." A sequen-

tial itcrative solution would proceed by ordering the interior mesh points

of a region R and cyclicly applying one of the approximations A, B, or C
over the ordering until some specified convergence criterion is met. In
a sequential pass over the ordered interior mesh points of R, two possi-
bilities for updating the values for u{x, y) at each interior mesh point are

available: (1) as each new approximation to u(x, y) is generated at a point,

b1
B
x
R
]
5
g

it is made available for subsecuent calculations in the pass, and (2) each

. e,uéx.é'
2R

pointwise approximaticn to u(x, y) made in a given pass uses only point
values available at the end of the preceding pass. The former['_latter]
method of updating ofter is called the method of successive [simultane-

wus] displacements.

If the interior mesh points are ordered, say as Py» Pyr + + «» Ppo and at

each point p. the value of u(x, y)is regarded as a variable x; to be deter-
IS

mined, then each of the methods A, B, or C of approximating u(x, y) over

R may be written in matrix form as
PX =Q (38)

where X = (xl, Xor v e xk) is a vector of unknown corresponding to
the values of u(x, y) at the interior mesh points ¢ R, P is a coefficient
matrix of known constants determined by the type of approximation (A,
B, or C) being used, and {2 is a vector of known cons:ants determined by
the approximation being used and known boundary v& * 3s for uix, y). The
system (38) may be solved by relaxation methods d. «ussed under ltemn 3

above,.

Jf for a given method of approximation to u(x, y) over the interior of R,

the corresponding matrix [as cited in (38)] is constructed and Wopt (see

-194.-

" :
R&«‘—vw TR T T S e mmm—— g T . . I——

R WWL‘W P

APPENDIX VIII

Itemn 3} ie calculated, then w may be used to increase the rate of con-

apt
vergence for tb:> method of successive displacements described above,
For approximation A, the procedure would be as follows. For the func-
tion u(x, y), a residual r(x, y) is dofined at each interior mesh point of
R as

k3

r(x, y) = ulx+ 4, y)+u(x -4, y)+ulx, y+A4)+ulx, y - A) - 4u(x, y).

(39)
Then specify a new approximation, say u(x, y), as
. w t
lx, y) = ulx, y) + —&=r(x, y). (40)

Note the correspondence of (40) and (18). Similar modifications of ap-
proximations B and C are readily specified. Although modification of the
method of successive displacements by the use of wopt in the fashion of

(40) increases the convergence rate, the use of w in conjunction with

the method of simultaneous displacements is of nc?l;troﬁt.

The numerical solution to Laplace’s equation over a rectangular region
partitioned by an equally spaced rectangular mesh is specified easily in
terms of approximations A, B, or C and the methods of simultaneous or
successive displacements, An immediate question arises as to which of
the available techniques offers the most rapid convergence. To crmpare
the relative merits of the techniques outlined above, code ITEST was
written in FORTRAN 1V for the IBM 1410. ITEST will solve Lapiace's
equation over a 9-by-9 square mesh of equal mesh spacings using ap-
proximations A, B, or C (or combinations} in conjunction with simul-
tar.eous or successive displacements., Table VIII-1 lists some results
obtained using ITEST. For each of the three runs listed, u(x, y) was
specified to be zero on the boundary. The true solution for u(x, y) was -
then u(x, y) = 0 in all cases. In run l, u(x, y) initially was specified

to be zero at each interior mesh point except at the "center" point, which

was specified as 1,0, In runs 2 and 3, u(x, y) was specified as 1,0 at

¥

-195-

APPENDIX VIII

TABLE VIlI-1 - RESIDUES AFTER TWELVE

ITERATIONS FOR RUNS 1, 2, AND 3

-t

j Approximation Residue:-;fter 12 iteratio;
sequence Run 1 Run 2 Kun 3
A A A, ... 0.506 | 15.482 | 6.458
B, B, B, ... 0.218 5.989 1.071
cC,C, C, ... 0.506 12. 856 4.567
A, B, A B, ... 0. 380 9.602 2.746
A, C, A C, 0.554 14. 105 5.436
B, C,B,C, ... 0. 346 8.757 2.285
A, B, C, A B, C, ... 0.418 10.581 3.267

each interior mesh point. For each of the three runs, each of seven dif-
ferent combinations of approximations A, B, and C was used for 12 itera-
tive passes over the mesh. The seven combinations of A, B, and C are
listed in column | of Table VIII.1. In runs 1 and 2, the method of simul-
taneous displacements was used while run 3 employed successive displace-

ments.

For each iterative pass over the mesh, a "residue” term was calculated.
The residue term is just the sum of the absolute value of the errors in the
approximation to u(x, y) at the interior mash points. Columns 2, 3, and
4 of Table VIII-] list the residue term comput'ed after the twelfth iterative
pass for each of the seven combinations of A, B, and C for runs 1, 2, and
3, respectively. Figures VIII-1 through VIII-§ contain the pointwise ap-
proximations to u(x, y) obtained after 12 iterative passes over the 9-by-9
~ mesh on runs 1, 2, and 3 using successive approximations A, A, A, . . .,
' 3, B, B,...,andC, C, C,

Inspection of the table and figuree cited above reveals that for the methods
tested, the most rapid convergence is obtained by using the method of suc-
“ cessive displacements and approximation B, (X). The convergence rate

-196-

——

R R Bt i o4 ~--v - a{:m A - -

B . = o o

APPENDIX VIII

[} 0 [+ -] [} [} ¢ [[}
[] [] [] [] ‘¢ []] [] [
o 0.008 ©.0¢ 0.018 Q.0 0.018 0.0 0.008]
[[] [] [] [] [] L » []
»
[0.0 Q.023 0.0 0.034 00 0.029 co [}
[] ® ® [] [] L] [] * []
] 0.016 %] 13.042 0.0 0.042 0.0 0.0°¢ 0
[] [] ® [] [] ® [[] []
o 0.0 0.034 0.0 0.050 2.0 0.024 0.0 o]
[] [] * [[] [] L] [] »
[} 0.018 0.0 0.042 0.0 0.042 Q.0 0.218 [}
[] L] [] [] [] [] [] > L]
\] 0.0 Q.023 Qo 0.034 0.9 0.023 0. o
[]] [] [] [] L] [] L] *
[} 0.008 0.0 o.018 2.0 o.0e [R] 0.00¢ [}
» [] [] * [] L [] [] []
Q [} 3 [] 1] o o [}
* [J L] L] . [] L]] ®
ITERAYION 1 2 3 4 $ L 3 7]] n 1 12
AKSOuE 1.0 1.0 10 09néA 0983 09102 06504 00081 O 753 0.7032 O 6518 0.6C80
“DUE TO THE APPROXIMATING FORMUL A A 14) AND THE INITIAL APPROXIMATION FOR u(s, ¥}, VIT:
VO POR L) = {8 %
wit, o=
JO0THEPW'SE
THE ITERATIVE APPROXIMATIONS FOR u(a, vyi AT TRI INTERIOR PO NTY ALTENNATE QETWEEN
ZEMO AMD MOMZERD VALUES THl VALUKS FOR I 2 utd 3, AND w2 4) AFTER ITERATION Y
WERE 00 0013 AMDC O 0 RESPECTIVIELY
A
Figure VUl-1 - Run 1, Simultansous Displacements, Approximation A (+), ,
12 lterations “p
!

-197-

S N

APPENDIX VIII

¢ ° o o ° ° ¢ e o
) ° ° e)
¢ 0.00 0.0 00 - 0.0 0.0 0.0 0.0 °
e o\ . 0 . /o\ . . °
o 0.0 0.019 /o.o 0.026 2.0 0.019 9.0 0
» . . ° .) o . °
\ \ ’ \
° 00/,0 N on 0.0 o.o/oo N oo 0
° o\ ° e . n\ . /o .
Z) 0.0 ‘o.uzs/ 0.0 0.037 /o.o 0.026 0.0 o
;; [] [] ® [4 EJ [] [] (] L]

a9 0.019 0.0 0.026 0.0 oot 0.0)

[] [® [) .\ [] ® [] []

o 0.0 0.0 ‘0.0 00 \oo/ 0.0 \\:o o

. » »

5 5 o) 0 0 0 0 o

® [/] ® [2 -] ® L] L]

ITERATION M 2 3 4 5 6 7 [+] 9 10 " 12
RESICUE 19 %0 10 67556 ©7:56 0.5623 0.5625 1.4704 0.4104 0.253% 0.1991 C.717y

"NUE TO THE APPROXIMATING FORMULA 8B (%) AND THE IKITIAL & SPROXMATION FOR (X, ¥, Vi

1LOFOR (1, j) = (8, 8
uii, j) =
3 OTHERWISE

Q ONLY VALUGS OF uix, y! AT THGHE POINTS CONNEUTED RY LINES ARE AFFECTED. APPROXIMATIONS
AT THE CONNECTED POINTS ALTENKLATE BETWEEN ZERO ANMD NONCZZRO VALULS., THE VALUES FOR
Uiz, 2}, wi2. A, w2 B}, AND 0l2, B AFTER ITERATICN Y1 WERE 0.0U8 0015, ¢.CI1E A.'D 0 C06 RESPECTIVELY,

Figure VIII-2 - Run *. - ltareous Displacements, Approximation B (X),
L 11, 3

-198-

APPENDIX VIl

]) b) 0 o 0 0 0]
[} [] ® [] [] [] [[] []
0 0.002 0.005 noo7 0000 0.007 0.00S 0.¢03 0
® . . ° [o ° ° e
¥
0 0.005 0.010 c.013 0.014 0013 2010 0 708 1
o)] . s) .)]
o 0.7 0013 0.017 0019 o017 a2 r.007 0
° [° ® ° . . [°
o 0.008 0.014 0.019 ¢.020 0.019 0014 0.00%@ 0
. ° . ® " ° ° ° ®
0 0.007 0.013 0.017 0.015 0.017 0.013 0.007 0
) ®)) ® [)) °
9 0.003 0.010 0013 0.014 0.013 0.G:0 0.00% 0
° ® () L)) ° s ° ®
0 0.003 0.00% 0.007 0.008 0.007 C.008 9.0Cc3 0
° °)) °) ° * °
0 0 0 0 0) 0 0 Q
° » [)) °) e (]
ITERATION 1 2 3 4 L) 6 7 (]] 10 " 2
RESIDUE 1.0 1.0 1.0 09676 0.9163 08351 5.7908 0.7272 0.8662 0.6088 0.3583 0. 3084
INITIAL AFPROXIMATION FOR u(x, ¥):
1LOFOR (i, j) = (8, 8)
ufi, j) = -
0 OTHERWISE

Figure VIII-3 - Run], Simultaneous Displacements, Approximation C (Q). :
12 Iterations

-199. 1

b R - e oeen b Vgt A e e e

APPENDIX VIU

0 0 0 0 o 0 0 0
L4 L [] [L) ¢ o .
: o 0.092 0.168 0.218 0.238 0.218 0.168 0.092 0
1) °) °) .)) °
o c.168 0.209 0.400 0.433 0.400 0.309 0 168 0
°) n °))) .)
0 0.218 0.400 0.820 0.360 0 520 0.400 0.218 °
)) ° °) ° ° ° °
) 0.248 0.433 0 60 0 536 0 sec 0.433 0.238 o
° °))) .) ° °
3 v.218 0.400 0.520 0.58C 0.520 0.400 o218 o
) .) ° o . . ° .
0 0.168 0.309 0400 0. 433 0 450 0 308 0.168 °
.) ° ° ° .) ° .
0 0.082 0 188 0218 0238 0.218 o 188 o 092 0
° . ° ° ° .) ° ®
0 0 0 0 0 0 0 0 ()
)) . ° ° .)) .
ITERATION 2 4 Y) 19 " "
REIIDUE 420 37.280 33500 30.301 27 719 25 179 33297 21 438 1373 (0 188 16 TIE 18 A82
-~
INITIAL APDROLIMATION FOR y(x, v):
Hi%, ¥ S L OAY ALL INTERIOR POINTS
Figure VIII-4 - Run 2, Simultanecus Displacements, Approximation A {+),

12 Iterations

-200-

- A A A
P Y L2

»s

APPENDIX VIII

0 0 0 [} 0 0 o o 0
[] [® ® [] ® [[] []
(] 0.047 0.084 0.090 0.06¢ 0.0%¢ 0.064 0.0%7 ©
[] [] ® [® (] [® []
v 0.0m4 Q. 108 0.1%4 C.184 0.154 0. 108 0.088]
[] [] [] L ® o ® | J []
[+) 0.09%0 0.154 0.21n Q.28 0.2'8 [H) 0.0% 0
® » ® ® ® [(] L ®
0 ©.09%0 0.154 02w 21 re'e 0.183 0.095 - -}
[] ®] [] [[] ® L
[»] 0.03¢ f.184 [-% &1 0.218 0.3:8 LI ¥AN 0.090 -]
L] 9 [] ® [} ® ® [] []
4] G e 0.109 0.154 0.18% C. 184 0.100 ¢.c8e]
® (3] L [] » [[J [] ®
0 2047 0 taa 0 290 e) o.080 0084 0.097 (]
[]] [} [) [] * []
g Q Q] 3 -} [] [])
[] [[] ® e [L] []
1TERA Y ON t 2) . L} . b]] . "0 1 13
RELIOUL MO HINW 8000 2! WY A0 B804 1314t 11208 SBYY G 21T G8FY BMGR
T AL STRROXINATION FOW iy, v
[W QAT AL 'MTYEMIOA DOINTS

Figurs VIi{-5 - Run 2, Simultaneous Dizplacements, Apgroximation B (X},
12 Iterations

~23L-.

PR N

APPENDIX VI

IR L s e L, v TR T

] 0 0 0 [} 0 [} 9 0
L) LJ] 9 ® [} ® @ v
e 0.97% 0.138 0.180 0.194 0.180 0.138 C.07% 0
® L J L} ° [] [] [] [] (]
0 0.128 C.285 0.332 0.389 0.232 0.253 0.138 0
L] ® ® L] L] L} L] ® ®
(v} 0.180 0.332 0.4.3 0.488 0.433 0.322 . 180 2
® ® [J [] ® L} ® ¢
9 0.195 0.359 0.458 0.506 0.468 0.355 0.195 ¢}
| []] L} ® [] [J ® []
0 0.130 Q232 0.433 0.4C8 0.413 0.332 0.180 0
L] ®) L LJ [) ® ® L J
0 0.138 0.255 0.332 0.3%9 0.332 0.25% 0.138 o
L] L] [] [] ® [) [L]

0 0.075 0.138 0.180 Q.194 C. 180 0.338 0.07% o]
[} [] ® ® L} L] ®] L]
0 o] 0 0 [¢] o 0 0 0
? L} [L] L] ® [] L] ®
ITERATION | 2 3 4 5 6 7 -] 9 10 Wt 12
RESIDUE 40.800 35610 31.560 26.237 25.410 22.353 20.785 18.852 17.118 15.554 14.139 12.856
INITIAL APPROXIMATION FOR "1(Xx, ¥}:

ulX, y) = 1.0 AT ALL INTERIOR POINTS

Figure VIII-6 - Rur 2, Simultaneous Displacements, Approximation C (01),

12 Iterations

R LT - ~—
* Mww‘

- ”‘""“‘_‘,ﬁm«m\, —

APPENDIX VIL

0 o 0 0 o] [} o] 0

° ® ® ® [] ® [J L g °

0 0.0%2 0.092 0.114 0.118 0.102 0.074 0.037 [J

[} s [] ® [4 [} L} L] [

0 0.092 0.161 0.199 0.204 0.178 0.127 0.064 0

® L} [] [® [] ® ® ®

0 0.114 0.199 0.246 0.2%0 0.217 0. 158 0.078 0

L] 9 ® ® L] L} [] [] []

Y] 0.118 0.2024 0.250 0.25% 0.220 0.187 $.079 b

(]] L4 L] [] L J 9 [] []

b} 0.103 0.178 0.217 2.220 0.190 0.138 0.068 0

® ° ¢ ® [] ® ® L] [

o] 0.074 0.127 0.158 C.157 0.138 0.086 0.046 Qo

L] *® [] ® [] L] |] [] []

o} 0.037 0.064 0.078 0.079 C¢.065 0.048 0.024 [+]

L] J ® ® L] L J [}] ®

¢ 0 0 ¢ 0 0 [¢] n 0

L J L} e ® [] L J ® ® ®
ITERATION 1 2 3 4 S 6 7 8 9 10 it 12
RESIDUE 38.057 31.138 26.082 22.115 18.879 16.117 13.887 11.927 10.242 8.789 7.537 6.458
INITIAL APPROXIMATION FOR u(x, ¥):

u(x, y}) = 1.0 AT ALL INTER!OR POINTS o~

Figure VIII-7 - Run 3, Successive Displacements, Approximation A (+),
i2 Iterations

-203- :

TG AW AT
Yol oal

- L PR

APPENDIX Vi

o o ° o o) 0 o 0
]) . ° ° ® . e [
3 0 00w 9.018 G229 0.028 0.023 Q.01 2.010 °
. ° °] [] ° e . »
> 0 0.015 0.028 0.036 0.040 003 0.0260 09018]
b °] . ® ® ° . . *
0 0.017 ©.031 3.041 ¢ 04 0.041 0.031 0.c1? o
3 ° ® .] ®] . ° .
‘ 0 0.0 G.029 c.038 2.041 0.038 0.029 0016 o
° 2]]] . .] °
¢ 0.012 0.023 0.030 0.032 0.03¢ 0.023 0.012 o
] ° . . . ® ° . .
o 0.008 c.015 c.019 2.021 0.918 0.015 0.008]
°]) .]
o D.co4 0.007 el 1 0.210 d2.010 2.007 0.004 0
] ° ® . °]] .
o 0 S]]] o 0] o o
° . ® . . ° . .]
ITERATION 1 2 3) L 6 7 8 9 10 1 1H
RESIDUE 31.081 22.520 i6.682 12.471 9.323 6.9% S5.124 3.763 2734 2012 1468 :.071
= INITIAL APPROXIMATIOR FOR u(x, y}:
‘, G{X, Yy} = 1.0 AT ALL INTERIOR POINTS

Figure VIII-8 - Run 3, Successive Dispiacements, Approximation B {X),
- 12 Iterations

o

-2G4-

nﬂm-wmwa"“_ T e J—
v - r e .. o -

APPENDIX VIl

o [(-} 9 o o [} o (4]

[] [] [L] [} [J [J [] []

0o ©.0%0 0.0s8 0.08% o.008 0.7 0.058 0.028 4]

[[] [J & e [] ® []]

] 0.067 C.1)?7 0.148 0.1 0.130 0.09¢ 0.048]

[] L J [® [] L 4 [L] L]

u 0.ne1t 0.142 6.7 0.180 0-1%57 0.213 0.058 0

*® [] L) ®] [® [] []

o] 0.981 0.142 G.17S 0.779 0.156 0.112 0.087 L]

[] L J [® [[] ® [4 L]

2] 0.069 0.121 0.149 0.152 G.132 0.09S 0.048 o

® [] [] [® ® [] ® L]

[+) 0.549 0.08% 0.104 0.106 0.092 G.066 0.034 0o

[] ® [J ° [4 [] [] °]

] 0.0c« 0.042 0.C32 0.082 0.046 J.c33 0.017 0

[] L] ® [] [}] [] [] []

o o /] 2]]] o] ¢ [+

» L] ® ® [4 [] [] [L J
ITERATION 1 2 3 4 L [} 7 8 9 10 1" 12
RESIDUE 36.514 29.078 23756 19.64C 16.3S2 13.645 11.393 9.511 7.930 6604 3.#/04 4.557
INITIAL APPROY.IMATION #OR ul(x, y):

WX, ¥y} = .0 AT ALL INTERIOR POINTS .

Figure VLI-9 - Run 3, Successive Dispiacements, Approximation C (D},
12 jtera:ions

‘205" s

rrww“”"' -
- ":‘

APPENDIX ViIi

for B could have been accslerated by the use of wopt' It will be noted that

o O N

in soiving Laplace's equation cver 2 mesh by methods A, B, or C, the

sum of errors in the approximation of u(x, y) at interior points will re-

B TrS

main a constant until the iterative procedure successively spreads the

error at a point(s) to the toundary; it 1s only when boundary values are

brought to bear that th= total pointwise error in the interior of the mesh

can be reduced. The method of simultanzous displacements could be im-
plemented easily on the parallel processor described in Appendix VI.
However, the slow rate of convergence obtained using simultaneous dis-

- placements and the difficulty of obtairing applicable acceleration parame-

- ters mcke the method somewnat unattractive, even for parallel processors.
_11. Mesh Fill In

Iterative numerical solutions to Laplace's eq:ation over 2 mesh begin wiik
the assumption of some initial values for uix, y) at interior points. Ciearly,
the greater the accuracy of the initial approximations, the more rapid
should be the convergence. A method 1s described here for fiiling the
intericor of a mesh rapidly with accurate initial approximations tc u{x, y)
based on known boundary values. This will be confined to the 9-by-9 grid
previously cited. Extension of tne methed to any (Zn + 1} by (Zn + 1) mesh

is immediate.

Let the value of uix, yv) be denoted at points of the 9-by-9 mesh as uii, j),
with i and j being determined as in matrix nectation. Since {u(S, 1}, u(5, 9),
u(l, 5), u(9, 5)} are known, u(5, 5) may be approximated by A. Knowirg
u(5, 5), {u!3, 3), u(3. 7), ul7, 3), u(?. 7)} may be approximated by B,
then {u(S, 3), u{5, 7Y, u(3, S5), u(s, 7)} by A, etc. For a 9-bv-9 mesh,
five such passes are required for coiplete fili-in of interior points. Fig-
“a ure VIII-10 illustrates how the {ill-in proceeds for each pass. The num-
bers above the points in the mesh of this iilustration indicate the pass in
which corresponding approximations to u{x, y)} were made. The approxi-
mations made during each pass depend only on boundary values or results

of the previous passes, or both; hence, they are amenable to parallel

=

-206-

K t s A — A o -~ 2 s~

APPENDIX VIII

PASS 2, B (X)

A

PASS 1,

]

(]

PASS &4, B (X)

PASS 3. A ()

PASS 5, A (+)

O Ve

ne N

<TOoO NS

 TONe

noenNe

< ®

n e

L& J

w e

L]

n o

- @

"w e

"me

nw e

- @

w e

" e

w e

cTONGeCTO

NONONS

cOnOewe

nemewne

TONGCTO

neoenNdWVe

cCONOwO

Figure VIII-10 - Parallel Fill-In

-207-

oprrt

APPERNDIX VII

computation. Accordingly, the above method of mesh fill-in is referred

e TR

to as parallel fill-in (PFI). PFl can be executed readily on parallel proc-
essors where rapid, universal communication between processing ele-

ments is available.

To check the accuracy of PFI, code FILIN was wriiten in FORTRAN IV
for the IBM 1410. Given values for u(x, y) on the boundary of a 9-by-9
rectangular mesh of equal spacing, FILIN calculates initial approxima-
tions on u{x, y; at interior points by PFI. FILIN was run for 11 different
sets of boundary conditions. Figures VIII-11 through VIII-21 give the
boundary conditions and resultant fill-in based on PFI for the 11 runs.
Inspection of these figures reveals the excellent results achieved by PFI
for the boundary conditions specified. Although the impiementation of
PFI is more suitable to parallel processors, its accuracy is such that

it is to be recommended for use on sequential machines.

¢. Parallel Execution

The numerical solution to Laplace's equation over a mesh by simultaneous
displacements is structurally well suited to parallel computation. For.a
parallel processor of sufficient size, a processing unit could be assigned
to each interior mesh point. Each unit then would compute and store, in
an iterative fashion, :approximations to u(x, y) at its assigned pcint. The
communication capabilities of Machines I or Il {Appendixes VI and XV)
would allow the use of any combination oi the approximations A, B, or C.
In the event that the number of interior mesh points exceeded the number
of processing units, each unit could be assigned a block of interior mesh
points and the iteration could proceed "parallel by block and sequential by
point within a block." However, although the methed of simultaneous dis-
' placements is structurally well suited to parallel execution, its low rate

| of convergence makes it somewhat unattractive,

The method of successive displacements, while apparently unsuited from
a structural point of view, is in fact quite attractive for parallel computa-

¢ tion. The rate of convergence for the method of auccessive displacements

-208-

' m RN o S S— L e R S e AEAARME T W - -
otk P . L TR T

YT B BTN

APPENDIX VIII

1 1 1 1 1 H 1 1 1
° ® ° ®) ® » ® ®
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
° ®) ° ® ® ®) ®
1 1.0 1.0 1.0 1.0 1.G 1.0 1.0 {
®)) ° ° [) ® »
1 1.0 1. 1.0 1.0 1.0 1.0 1.0 Y
°] ° [} . [} o) ®
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
) °)) ® (] ®] »
1 1.0 1.0 1.¢ 1.0 1.0 1.0 1.0 1
°)) °] * ° ® °
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
¥ ° °® ® ®] ® ®
i -0 1.0 10 1.0 1.0 1.0 1.0 1
° °] . ® ® ® ° °
1 1 1 1 1 i 1 1 1
)) ® ® » ® ®) [
Figure VIII-11 - Parallel Fill-In, Run 1
-2C9-
I - W‘W W e ww—- Tty

i

APPENDIX VI

1 2 s 4 5 6 7]

@ L]] ° ° ® ® ¢

1 2.0 2.0 &0 5.0 5.0 7.0 8.0

L] L} L 4 ® [[] L J ®

) 1 2.0 3.0 an 5.0 6.0 7.0 8.0

® o » [] ® ® [] ®

1 2.0 3.0 4.0 5.0 6.0 7.0 8.0

L] L L] [] L J [} [] [

1 2.0 3.0 4.0 5.0 6.0 7.0 8.0

LJ ° ® L} [J € L J ®

1 2.0 30 4.0 §.0 6.0 7.0 8.0

(1] [L] L} L] L3 [] [)

1 2.0 3.0 4.0 5.0 6.C V.0 8.0

® L 4 ® ? L] ® ® L]

1 2.0 3.0 4.0 5.0 6.0 7.0 3.0

L4 [] L L] [] ® ® ®

1 2) ¢ 5 6 7 8

¥, ® L] e] L J ® L} ®

{
‘. Figure VII-12 - Parallel Fill-In, Run 2

e oo e

L &

amgmqm% e e

-2 -

APPENDIX VIII

] 9 9 S 9 9 9 9 9
° L J L] L] [J ® [¢ []
8 8.72 8.25 8.3 8 .50 8.52 8.7% 8.8 9
® e ® ® L J [] » [J []
7 7.28 7.50 7.7% §.00 8.2% e.50 8.7% 9
® ® [4 ¢ o ° [L]]
6 6.38 6.75 7.12 7.50 7.88 8.28 8.62 9
L J ® L ® ® 9 [] L] []
-] $.50 6.00 6.50 7.00 7.%0 8.00 8.50 9
[] [] L 4 [J [} [] ® ® ®
4 4.62 5.28 S.88 6.50 7.2 7.7% 8.38 9
| J [] L4 L] e [] ® L J L]
3 3.78 4.50 5.28% 6.00 6.75 7.50 8.25 9
] ® * L] [] L] ® [] ®
2 2.48 3.78 4.52 8.5 £.38 7.2% 8.12 9
[¢ ® [L}] ® [] [
2 2.88 3.7% 462 8.50 6.38 7.2% 8.12 9
¢ [] [) ® [J [] [[J ®
1 2 3 4 3 [7 8 9
L] [] ® [] [] ® @ ¢ ®

Figure VIII-i3 - Parallel Fill-in, Run 3

~e¢ll-

wtot oo o, oo o R - v " SURCIPUEIO e i A
":; pa— o "

APPENDIX VIII

) s 7 6 5 4 2 2 1
L] ® L] [] [] L J ° [®
] 7.28 6.50 5.78 5.00 4338 3.50 2.7% 2
® [] [) L] [] > ® L] L]
? 6.0 6.00 %.%0 5.00 4.5%0 4.50 3.50 3
L] ® [] L] L] L} L} [}]
6 5.78 5.50 5.28 5.00 478 4.50 428 4
[] ® L] (] ® ® ® []]
S $.00 5.00 5.00 5.00 5.00 $.00 5.C0 $
[] L} o [} (-] [] L J [] []
4 4.25 4.50 4.75 $.00 5.2% $.%0 5.7% 6
[} 9 ® [J [] L] » L] L]
3 3.50 4.00 4.50 5.00 5.50 §.00 6.50 7
[]] ® o ® ® [J @ L J
2 2.7% I8 4.2% 5.00 $.7% 6.%0 728 8
® [J L] [] [) [} L J ® []
¢ 2 3 4 5 8 7 8 9
[} [] ® ® [] [] [] L J []
-~
1
;o Figure VIII-14 - Parallel Fill-In, Run ¢
-212-

W T

AFPENDIX VIII

-

-

1.76

1.7¢

»nN
*E

"
*y

228

2.30

2.7

2.78

2.78

] 4 3
® ® ®
re .44 2.70
L] ® ®
3.2% 2.98 2.50
¢ ® *
2 24 a7 2.0
[4 L ®
3.00 289 2.2%
[L J]
194 .78 2.3
® [] »
3.23 .94 1.9
L 4 . -
370 34 I
[] L] L}
s 4]
L] L J]

1.7

1.49

1.7¢

-

Figure VI-15 - Parallel Fill-In. Run $

-213-

i
3

e

¥

X

o

APPENDIX VI

C E: 1 V2 Va Vs Vs N \7 Vs 3
TLonE ° . » . . . » - e °
%
£
% Kl 1.23 1.54 1.92 2.17 2.40 2.61 2.81 3
B . o o] ®] * ° [)
1 1.30 1.59 1.87 2.12 2.1 2.59 2.8¢ 3
‘®] e)) * ® . »
s 1 1.29 1.58 185 21 2.35 258 279 3
< 'y 'Y . 'y ™ . ® ° - °
- 1 1.29 1.57 5.85 2.12 2.35 2.57 2.79 3
¢ ® ° . . * - . °
3 1.29 1.58 1.85 .1 2.35 2.58 2.79 3
° . ° ® ' . ® . .
1 1.30 1.53 1.87 2.13 2.37 2.59 2.80 3
* ™ ° ° . . . 'y .
1 1.53 1.64 * .92 2.7 2.40 2.61 2.81 3
® . . . » . ° . .
e, 1 V2 k! Va Vo \'S V7 Ve 3
f‘”{ _' I . ° ° *
t
o -

Figure VIII-lo - Parallei Fill-In, Run 6

- -214-

APPENDIX VIII

<
3
1 V2 V3 Va Vs va Vs V2 1 -
® . ° . . ° ° ° °
1 1.30 1.57 1.78 1.07 .78 1.57 1.30 1 .
® ® ® ° ® ® [¥ ® ~
1 1.24 1.46 1.62 1.7 1.32 1.46 1.24 1
® ° ° ° . . . ® ®
. 1.21 1.40 1.54 1.60 1.54 1.40 121 i
[] [} ® ® [] ® o - o
1 1.20 1.39 1.52 1.62 152 13 . 120 Ty e
* ° ° °) ¢ s :] ® EN
3 1.21 1.40 1.54 1.60 1.54 1.40 1.21 1 .
° . ° ° . Y ® . . :
1 1.24 1.46 1.62 1.7¢ 162 146 1.2% s »
° ° ° ° . : ® . ? - * :
1 1.30 1.57 1.78 1.7 1.78 1.57 1.0 1
° ° e . . -
1 V2 Va3 Va Vs Va4 V3 V2 o
. . ® . ‘o ® » 'S -
T

Figure VIII-17 - Parallel Fill-Ir, Run 7 .

-215-

*sonbi

‘\'1’%
.

WY ST ; ?

"

.

-
)

AR

4

=

X
v

FUTSRTT N S S 1 I

Y TP L AR

APPENDIX VII1

A

S]]] . H 1 1 %
) ® ® 4 ° ° .) ®
Y2 L2 .20 114 % 197 1.4 1.0z]
® *))) ® ®] 13
¥3 1.53 3. .23 118 1.13) 1.04 1
» ° * ®] ® ® [)
ve 173 152 i B 128 .17 19 i.CS H
. * [L] & @ * [3 [J
VS B & - I .58 1.%¢ 13 119 112 108 .
® ® ’ L I e * ® [®]
VA 173 vs2 Y-/ 126 R 7 110 105 1
L e 3 . . -® ® s]
V3 1.5 1% 119 119 113 1.08 104 1
€ 1) °) . . @ ® ®
V2 128 . 120 1.4 ' 10 127 1.08 1.02 :
® * .- ® » e’ *)]
1 1 1 H 1 1 1 1 ?
' e . . ° . ° e [
Run 8

Figure VIII-1§ - Paraliel Fill-In,

-216-

?‘,ﬂ N S ey o OO “wvww

APPENDYX VIO

-217-

[.) : 1 1 ' 1 °

s . * . ° . . °

-1 0.3 ess LX) n s 0.3 0.00 -1

° ® »

-1 2.00 220 c.2s o2 .00 .3 -1

. . . * . . . ®

-1 ~6.20 v.C0 0.9¢ c.00 -0.2¢ 0.9 -1

. . . . 3 . * °

-1 2025 -0.06 2.00 .06 -©.25 -n.s9 -1

. e ° Y

- -0.20 ©.00 c.2s 20 .20 -0.5¢ -t

. © ° .

-1 .00 5.20 228 0.20 2.00 <.® -1

) . ° ° ° ° . .

-1 0.39 9.56 c.19 u.56 0.39 0.00 -1

° .) ° °)))

Q 1 1 1 1 1 1 4]

))) .) . °)
{
.

¥igure VIII-19 - Paraliel Fill-In, Run ¢

"
-

»

APPENDIX VI

3
£
33
=
5 1.5 2 2 2 2 2 2 2 2.8
B [® . ° ™ ™ ® ® °
3
:
H
H
- ; 1 153 1.76 1.91 2.00 209 223 2.47 3
B []] [] [] [J [[] [[
7
1 1.2 1.62 1.83 2.90 217 2.38 2.68 3
L] » ° ® ° L ® L
-};
- 3 1.30 1.57 1.80 2.00 220 2.42 2.79 3
- [] ® [[3 [] o ® [] ®
1 129 1.56 v79 2 00 2.20 2.a4 27 3
° . ° ° . . ® . ®
1 1.30 1.%7 1.80 2.00 2.20 2.43 2.70 3
[J ® [] ® [] * [] [3 ®
1 1.36 1.62 1.83 2-00 2.17 2.38 2.64 3
[] [2 L J []] J | J [t 4
3 1.53 1.76 191 %00 2.08 2.23 2.47 3
@ L 2 ® L] ® [] ® [] ®
LY 1.5 2 2 2 2 2 2 2 2.5
™ . ° ™ . ™ . ° 'Y
i
.|

P PR

Figure VIII-20 - Parallel F:ll-In, Run 10

-218-

B . g < s T

APFENDIX VUI

(1)

0.7¢

0.47

o022

0.14

0.01

-2.16

~0.43

ae

053

0.29

c.os

~0.24

-1

0.72

0.12

~<.21

~0.59

1.63

1.20

0.85

0.55

0.22

-0.13

=1

159

1.23

J.e2

.62

0.32

.04

1.44

120

C.96

0.72

C.48

0.14

~2.33

1.23

1.10

0.96

2 66

0.72

-

Figure VIlI-21 - Parallel Fill-In, Run 11

-219.

A

=

APPENDIX VIII

can be improved by the use of acceleration pararneters. Further, since
in practice the number of internal mesh points involved in the sclution of
Laplace's equation will greatly exceed tke nuinber of processing units
available on a parallel processor, a "parallel by block, sequential by
point within a block"” type iteration must be vsed and such an iteration

is well suited to the method of successive displacements.

The PFI method for obtaining initial approximations to Laplace's equa-
tion over the intericr points of a mesh is ideally suited to parallel exe-

cution.

A test for convergence based on maximum pointwise change in approxi-
mation values between successive itzrations could be accomplished readily

on Machines I or II due to the rapid sort capability.

i .t . . R . ‘ Caa
B 3 ' y at;%cv o tp RN O i '
A M D Sk et w72 s L AR S S n;yavtiﬂfM*Mmﬂ AL T DT R

5. CONCLUSIONS

This aopendix has reviewed several mathematical techniques and analyzed
their suitability for parallel execution. These techkniques are Jacobi's
method for the determination of eigenvalues of real symmetric matrices,
the relaxation solution to a system of linear algebraic cquations, numeri-
cal solution te Laplace's equatior, and mesh {ill in, Each technique was
seen to be amenavle o parallel execution. It was further seen that each
technique involved cearching a set {cr the element of maximum magnitude,

a process well suited to a machine having sorting capability,

The inherent parallelism resident in each of the techniques provides a
suitable basis for a study to determine optimal methods of parallel exe-

cution.

‘ 6. REFERENCES '

1. Faddeev, D. K., and Faddeeva, V. N.: Computational Methods of
i Linear Algebra. San Francisco, Calif., W. H. Freaman and Co.,

1963,

R 2. Beckenbaughk, E. F.: Modern Mathematics for the Engineer. New
York, N,Y., McGraw-Hill, 1965.

-220-

SR e diliehant 4 - E T . ST g b RS

APPENDIX VIII

Forsythe, G. E., and Wasow, W. R.: Finite Difference Mathods
for Partial Differential Equations. New York, N, Y., John Wiley
and Sons, 1959,

Varga, R. S.: Matrix Iterative Analysis. Englewood Cliffs, N.J.,

Prentice-Hall, 1962,

Macon, N.: Numerical Analysis. New York, N.Y,, John Wiley and
Sons, 1963,

Hcuseholder, A. S.: The Theory of Matrices in Numerical Analysis.

New York, N.Y,., Blaisdell Publishing Co., I¥65.

3.

P
RPN

APPENDIX IX - MACRO INSTRUCTIONS FOR A PARALLEL PROCESSOR

AT RS AR L

1. INT” ODUCTION

Concurrent with ¢fforts directed toward the design and efficient utiliza-

tion of parallel processo~s has bean the realization that computational
capabilities resident in parallel processors give rise to new ways of
thinking about problems, their fundameniai structure, and appropriate
soiation models, It is therefore desirable that macro machine instruc-
tions, in fact a programining language, be developed that allow and in-

deed prorﬁote ease of cgnceiving and expressing the structure of parallel
solution models. This appendix presents a trief list of instructions ca-
pakle of compactly representing operations within a parallel solution model.
Cemputaticnal examgples are given alocug with 3 suggestion for expanding

and generalizing the instructions into a programming language.

2, DEFINITIONS
Let the Greek letters @, 8, v. . . . denote vectors of the form
Vo= 1
« (al' in L S | an) (1)
where a, fi=1,2, ..., n) is @ real number unless otherwise specified.
In ¢xpressions such as

a = {a), ay, - - o (2)

tne subscript n means that @ is to be considered an n vector.

3. INSTRUCTIONS

a, General

In the following instructions, &, 38, y are as defined in (1) and { denotes a

-

.y] SN N RN

M«M Mm;w-mm IR AL N IV Y, Y A RS - e P ©

AFPPENDIX IX

real number. The elements ai' i=1,2, ..., nofavectorg =

(ai, Uys « v)n correspond to real numbers stored in a parallel proc-
essor. In general, an instruction will specify the execution by the paral-
lel processor of some rule of assignment, I', that associates with the

vector(s) a a vector y. For example:

1. Suppose there is a vector ¢ = (G,, @

| an)
and the vector y = 2a = (2a;, la,, ..., ZGn) =
(\11. Yoo oo s \,,12) is desired. Then an instruc-
tion is specified directing the parallel processor

to effect the following rule of assignment:

I''a=—2a = vy.

2. Suppose there are vectors a = (@), a0+ o o v @)
and # = (ﬁ}l, ;32, e e ﬂn) and the vector y =
atB8=(a +B.a+By - o, +p)

(yl, Yor o v e yn) is desired. Then an instruc-

tion is specified directing the parallel processbr

to effect the following rule of assignment:
I:(a, B)—>a+h =vy.

b. List of Instructions

A list of instructicns follows. They are designed primarily to specify
the parallel execution of cominon arithmetic operations frequently en-

countered in computational procedures.

1. Shift right/left: (==, t) (a)/(=, t) (a). This in-
structicn operates ox a single vector, @ = (al' a,.

. e e an), to produce a vector y = (yl, Yo

RN yn) nnder the rule of assignment:
Ofor 1 S1 %t
v for (==, t} {a) ,
'ai-_txort <1=n
and
-224-

APPENDIX IX

Ofor(n-t}<i®*np
Y, = for (==, t) (a) .

$ i s -
ai+t£orl i2(n-1t)

Note: a is unchanged;‘ any overflow is lost.
Example: Leta = (1, 3, 5, 7). Then

Yy = (=~, 2)(a) =(9, 0,1, 3), v
y = (=, 1} {a) = (3, 5, 7, 0}.
2. Shift right/left one: {l~=, t) (&)/t*=], t) (@). This

instructior operates on a single vector, @ = (al'
Uy v o vy an), to produce a vector y = (yl. \7%
e yn) under the ruls of assignment:

l1for) 4 %
¥ T for (1~=, t) («),

< j 3
Lai_tiort i n

for(na-t) < i - I
Y. * for (e=1, t) (a} .

" - l; -
tai*tforz< i2(n-t)

Note: ¢ is unchanged; any overfiow is lost,

Example: leta = (7, 9, 1, 8, 5). Then
v & (i~ 3){@ = (1, 1,1, 7, 9.
vy = (el 4)(a) = (5. 1, L 1, 1),

3. Spread right/left: (j=e, t) (a)/{=j. © (@). This
instruction operater on & single vector, @ = (a,. 4,
voe e an). to produce a vevtor y 2 ("l' Yar o 0 e
Y,} under the following rule of assignment:

-iln this and the iollowing instructions where "a is urchanged.” ifa » y [for
example, @ » (==, t} (a]]. the posiiions ¢f ¢ are aseigned new values under
the rule of assignmant for the instruciion.

-6258-

hw;l\L“w ot e T T i R et b FRRR DUIRTPURGUIN

APPENDIX IX

- 'L».‘I Mot
BB, - b SRV

(@, for 1 ERRS
‘yi' = {9 ferj &3 §(j +.t)77- for {jme, tD (a) ,

E - la; for{j + t)< i & n

and _
Cfifor1 % i< (j-t
v, = { fonr('j BRI 5 j for (-j, t) (a) .
$n

.i forj < i
Note: a is unchanged; any overflow is lost.
Example: Leta = (7, 9, 1. 8, 5), Then

2=, 2 ()
{3, 4) (@)

(7, 9, 9, 9, 5).,

Y

H
"

¥ (1, 1, 1, 8, 5).

Note: overflow occurs in the above example.

4, Rotate right/left: (RR, t) (a)/(RL, t) (@). This in=
struction operates on a single vector, @ = (al, a5,
e e e an). altering it as follows., The elements

of a are shifted right/left t positions. Overflow

cut the right/left is added in on the left/right.
Example: Leta = (7, 9, 1, 8, 5), Then

(RR, 2) (a)

1]

(8, 5,7, 9, l)=ea,

(RL, 3)(a)

(8, 5, 7,9, l)~a.

5. Set sign plus/minus: [SSP; (a)/ ES@] (a). This in-
struction operates on a single vector, @ = (al. a;.
‘\% : e an), altering it as follows. Each element
¢ @ of @ is set ro ja;l/ - laj. Example: Leta =
(-1, 0, 7, -4, '&). Then

- -226-

ST

AFPPENDIX IX

b

[EsB] (@) = (1, 0, 7, 4, 12)—ea,
BsM] (@) = (-1, 0, -7. -4, -12)~a,

6. Scalar add/subtract/multiply/divide: [+, z] / E, :f]/
E" g /5, f] (@). This instruction operates on a
single vector, @ = (al, Ao+ e an). to produce

v s s R Mg S B A MR s

a vector y = (yl. Ypr o ¢ 0 yn) under the rule of

T

assignment:

v, < (o + DAZ - H/ta, X 0/te,/D .

Lo

Note: a is unchanged.
Example: Leta = (7, 9, 1, 8, 5), £ = 3. Then
vy = [+ f](a) = (10, 12, 4, 11,'8),
vy=[- f(a) = (4, 6, -2, 5, 2),
vy =[x fl(a) = (21, 27, 3, 24, 5),
vy =B H@ = (7/3, 3, 1/3, 8/3, 5/3) .
7. Vector add/subtract/multiply/divide: &/6/0/®

{a, B). This instruction operates on an ordered

pair of vectors {a, B):

a = (al‘ 12. *. o e an)

B =8y By oo By
to produce a vector
YR AN Y e vy
under the following rule of assignment:
vy = (g + B) /e, - B,)/(a;8))/1a,/B)

Note: ¢ and 8 are unchanged.

-227-

Xk A AN 5Fo--ron S 3

XL SRR s A

! .~ APPENDIX IX

%W B e S — hatee et
SR 3 N - -.W v

Example: Leta = (7,9, 1, 8, 5), f = (2, -3,
1/3, -16, 1}). Then

®(a, B) = {9, 6, 4/3, -8, 6),
e{a, B) = (5 2, 2/3, 24, 4),
@'(a,‘ B)
3 (a B

Sum: ¥ (a). This instruction cffectively is a sub-~

(14, -27, 1/3, -128, 5),

{7/2, -3, 3, -1/2, 5),

routire, It operates on a single vector, a = (al' a,,
N an), to produce a l-vector y = (yl) under

the following rule of assignment:

n
\'al-". E ai'
i=1

Note: a is unchanged.

Exan:ple: Leta = (7, 9, 1, 8, 5). Then
y = Zla) = (30).

Chain: ma). This instruction effectively is a sub-
routine, It operates on a single-vector a = (ael. a,,
e e an) to produce a l-vector y = (yl) under the

following rule of assignment:

Note: a is unchanged.
Example: Leta = (7, 9, 1, 8, 5), Then
y = ®mla) = (2520) .

-228-

APPENDIX IX

10. Create: C(a, n) (al. @y - o s an). This instruc-
tion causes a vector of iength n, called a, to be ,
stored in the parallei processor with elements a, ‘

specified with the instruction,
Example:
Cla. 7{(0, 1, 0, 0, 3%, 0, O)==gq.

11, If: IF (@, €)r, s, t. This instruction specifies a
transfer of program control according to the follow- -

ing rules:

a. Leta =(al; a. ... an)and £ =

(81, £ En) be n vectors.

znoue.

b. Letr, s, tspecify locations to which
program contrcl can be transferred.

¢. Then program control will be trans-
ferred to r, 8, or t according to
whether’&i< £, @ = £i’ a > ti

foralli=1,2,..., n.

SAMPLE PROGRAMS

a. general

Seme sample programs written in terms of the instruction list are ex-
hibited beiow. The existence of 2 "DO LOOP" type instruction is as-

sumed,

3. Program 1

Given X., &, n

ol

Construct V = (Xo. xo + A, .xo +24, ..., Xo + nA)n 41

Define: L = [Inz (n - li] (by [XJ is meant the greatest integer in X)

Procedure: %

L P i e

APPENDIX IX

Then

Example:

C(V,n+1){(0, A, 0,0, ...,0)

DOMk =0, L

Ve (=, 25
v oo <zk +1—. 2k>(V)
M - oV, V')

I 1
L+t Xo_' (v)

V=(k0, X0+A, x0+2A. e e e Xo+nA).

n
[\
)

Letn = 8, Then L = [fnz (71‘

The program would proceed as follows:

C{V, §)(0, 4, 0, 0,0, 0, 0,0, 0)

Going through the DO Loop would give:

K=20
K =1
K =2
*
\'4
Wk
v
\4

v* = (=, 1){V) =(0, 0, &, 0, 0, 0, 0,0, 0)
v = G, 1D (V) = (0, 4, 4, 0,0,0,0, 0, 0)
v=ew, v =(0 4, 24,0, 0 0 0, 0, 0)

v* = (=, 2)(V) = (0, 0, 0, &, 24, 0, 0, 0, 0)
M (e, 2> (V) = (0, A, 24, 28, 24, 0, 0, 0, 0)
v =o', Vi) = (0, 4, 24, 34, 44, 0, 0, 0, 0)

i

{=~, 4)(V) = (0, 0, 0, 0, 0, A, 24, 34, 44)
(5=, 4> (V) = (0, A, 24, 34, 44, 44, 44, 44, 44)
@ (v', v™) = (0, A, 24, 34, 44, 54, 64, 74, 84)

-230-

APPENDIX IX

and finally

RIS U SN L

V=[,X(J(V)=(Xo, Xy + A, ..., X, +80)

0
Program 2
Given: a = (a;. @,. @) B=1{B. By, B)
Construct: y = @ ¢« B = the scalar product of @ and 8 -;
Procedure:
= 3a, B
= Z(V)
Then V = (yl). where
n
Yy © Z @;8;
i=
Example: Leta = (I, 3, 5), B = {2, 4, 6).
Then
= &a, B) = {2, 12, 30)
= (V) = (44)
Program 3

Given: a = (all az, . L] LI] an)p €= (El) £2) L] . . 3 en)
wherecti > 0, Ei >0fori=1,2,...,n

Construct: y = (yi. Yo ¢ v v yn) where y, = \/ai. and ti is the con-
vergence criterion for a Newton iteration

Comments: A Newton iteration for finding /X proceeds as follows:

-lx+ W,
3i+1‘2‘§ &), a

where g. denotes the ith approximation to v/x. The manner of determining

-231-

2
¥
&
-:‘}
k]
{3
3
)

APPENDIX IX

tke inidal guess, g, depends on the range of x and, in computer solu-
tions, the manner in which a number x is stored in the machine. In the

program to follow, x/2 is used as an initial guess to Vx.

Procedure Corresponds to
= [x, 0.5] (a) - A x/2, initial gquess
m B = &a, G) x/8;
= ® (B, G) x/gi + g
y = [x, 0.5)(8) g, = %é-+ gi>
5= ©(y, G) 8,18 1
5= (5s¥]) P
IF(d,¢)r, r, t 18 41 -8 <| €?
t G=y No, (i + 1)—=i
Go tom Iterate again
't Continue Yes, g, ., |, = VX

and theny = (yl. Yor o o o yn) where T \/ai.

5. OBSERVATIONS

Some of the properties of the instructions listed above are as follows:
1. Instructions 1 through 4 involve essentially a shift-

ing right or left of the elements of a vector a¢ =
(al. [PYRR R an) with options of dropping over-
flow with corresponding fill-in by 0's, 1's, or ead-
around carry. The resulting vector is an n-vector

YAy v oo e Y,) with elements from
lo. 1 qeti=1.2, m

2. Instructions 5 and 6 involve a specified arithmetic

-232-

: . A, z -
3
:

APPENDIX I1X

6.

operation on each of the 2lements of a vectora =
(al, Ao o v v an). The resulting vector is an
rn-vector y = (yl, Yoo+ + o yn) with elements
specified in terms of {aij, i=1,2,...,nand

a commecn arithmetic operation,

Instruction 7 involves an ordered pair of vectors
(¢, B, a = (@.a,a) 8= ”31' '32'

RN 3n) and a specified arithmetic operation
for each of the couples (ai, 3‘1)’ i=1,2,...n.
The resnlting vector is an n-vector y = (\vl, Yo

.. s yn) with elements specified in terms of the
couples (ai, ‘Bi)' i=1,2, ..., nandacommon

arithmetic operation.

Instructions 8 and 9 involve a specified arithmetic
operaticn applied to the set of elements (ai} , 1=
1, 2. ..., nrnofavectorag = (al, Byr o o vy an).
The resulting vector y = (yl) is a 1-vector whose
single element is specified in terms of the set
{ai}, i=1,2, ..., nand an arithmetic oper-

ation.

Instruction 10 creates 2 new vector with elements

specified by the pregrammer,

Instruction 11 specifies a transfer of control, based

on the results of a tast.

The above observations guggest that further study of these and other in-

structions, yet to be defined, will produce new insights into the nature

of problems, possible solution mod~'<, and notations in terms of which

.

solution models may be written, Experience has, in fact, already shown ‘

this to be true, The instructions discussed in thig report were the re-

sults of an effort to determine avithmetic operations that would be fre-

quently encountered in machine computation, and instructions that would

-233-

APPENDIX IX

compactly specif{y parallel execution of suck operations. The list of in-
structions is quite short. Efforts to expreas parallel solution models in

terme of these instructions can be expected to produce changes in instruc-

‘ tion form ard definition, suggesi new instructions, and lead to the formu-
lation of a FORTRAN type language. The execution on a paralle' processor
of programs written in such a language would require the construction of

a compiler to translate instructions of the type listed: iato an efficient

program of micro instructione acceptable to the processor,

6. CONCLUSIONS

Attempts to write parallel solution models and to express the operations
involved in a compact notation have led to the development »f u prelimi-
nary list of macro instructions for a parallel processor. Experience gained
in constructing parallel solution models and writing programs for them
could provide a basis for modifying presently proposed instructions and

defining new ones.

The definition and modification of instructions is essgentially an eifort to
express compactly the operations characterizing a problem and structur-
ing pe3sible methods of solution. Hence, it is hoped that further develop-
ment of instructions will suggest new conceptual modes in which problems
and possible solutions may be analyzed, and provide insights into the na-
ture and significance of parallelisn. within a problem and methods for ex-

ploiting it by new computational procedures.

-234-

i

APPENDIX ¥ - PARALLEL COMPILATION

INTRODUCTION

L
.

Investigations into machine structure and parallel execution of coded
routines led logically to the problem of compiling a source program in
parallel. In other words, givén a sequence of statements written in, say,
MAD (Michigan algorithm decoderj or FORTRAN (IBM formula translat-
ing system), how can a parallel processor be used to compile the entire

set of statements in parallel”

In this appendix, an algorithm for parallel compilation is developed, a
method of simiulation on a sequential machine is described, and the re-
sults of a simulation for a small set of replacements are presented. It

is assurned that the language statements are written in MAD and that the
20 The MAD

language was chosen because documentation on its structure is readily

precedence hierarchy is that of Arden, Galler, and Graham.

available and because techniques developed through MAD can be extended

to other languages.

2. PARALLEL COMPILATION
a. General

During the process of compilation, a sequence of statements written in a
higher language such as MAD is translated into a se‘juence of machine
language statermnents. The compilation process usually decomposes higher
language statements into a matrix form of triples and then, from the

matrix, establishes a set of machine language statements. Included in

aUniversity of Michigan Computing Center: Michigan Algorithm Decoder. .
Ann Arbor, Michigan, June 1963. :

bArden, B.; Galler, B.; and Graham, R.: "An Algorithm for Translating

Boolean Expressions, " Journal of the ACM, April 1962; 9:222-239,

-235-

APPENDIX X

the compilation process is the handling of such considerations as dimen-

R R R ey

sion, mode, and storage allocation.
The compilation algorithm developed here deals only with the decomposi-
tion of higher language statements into triples. The statements are re-
stricted to replacement types involving nonsubscripted variables. The
2 previously cited precedence hierarchy is limited to the set of operators
ﬁ given in Table X-1.
TABLE X-1 - PRECEDENCE HIERAP.CHY
Operator [Description - Precedence
. ABS. Absolute value naighest
. P. Exponentiation
-u ~Unary minus
*, Multiplication, diviaion
+, - Plus, minus
= Equals (substitution) *
ko4,) Begin statement, end Lowest
statement, open paren-
thesis, close paren-
thesis
It is further assumed that the replacement statements are stored, symbol
by symbol, in an ordered list. For example, the MAD statement
F = A+ Bx ABS.(C+ D) (1)
is assumed to be stored in a list as:
- Index, i Itemi
0 >
1 F ()
2 =
- 3 A

-236-

*,., N E s tronan e o - - g R A A - A 5 . .
i S - A g, . 9’ “"‘ taand - - . i T L]
- S Ty \
N v .

APPENDIX X

Index, i Itemi
4 +
5 B
6 %
7 . ABS.
8 (‘Z) A
9 Cc
10 +
11 D
12)
13 4
Later it iz shown that the eet of triples corresponding to (2) is just:
Triples
C + D
(o) . ABS, R,
B . R, (3)
A + 83
F = R‘
In (3), R; denotes the resuiiaut from the igh triple (row). Now (3) is read,
row by row, as:
Rl = C+D
Rz x . ABS, (.R‘)
Ry=B+R,
R‘ ® A RS
F= R‘
s A+ B* ABS (C+ D)
Note that the {inal reading s juet {}). #
-23%7.

APPENDIX X

b. Compilation Algorithm

Irn parallel compilation, one tries in successive passes to examine simul-
taneously many statements such as (1), stored in the fashion of {2), and
tc fcrm on each pass all possible triples and simplifications for the en-

tire set of statements.

An algorithm fcr effecting parallel compilation is shown in Figure X-1,
On each passz, the tesis (operations) indicated in Figare X-1 are applied
to a list such s (2). Sequences of items taken 3, 4, or 5 at a time are
sougit that me~t certain conditions (blanks are ignored). If the indicated
conditiors obtain, triples are formed and/or statemen*s are sirnplified

as indicated.

As the structure of the flow chart in Figure X-1 indicates, the four oper-
ations may he executed concur ently; and the algorithm is capable of de-
composing, in parallel, all the substitution statements of a source-
language (MAD) program into a string of triples ready for final assign-
ment (machine langrage). Several passes through the loop may be re-
quire, he number depanding on the size and complexity of the program

to be comp’.
The operations indicated ' Figure X-1 proceed as follows:

1. Operation ! looks for quadruples ABCD, where A

is an overator; B is either a "-u" or an ". ABS5. ";

HA -

C is a variable; D is an operator such that P(D)
P(B), where P(X) denotes the precedence of X as
given ‘n Table X-1. It is assumed that B is the

ath item on the irput list. Variable C is removed,

Ty and B is replaced by the variable Ra. A triple is
a‘ formed of O, B, and C, and its resultant is stored
in Ra.
2. Operation 2 locks for all quinturles ABCDE, where
P A, C, and E are operators; B and iy are variables;
-236-

.
%’. R TN | b 4. Srvo————, . r—— ——— e
s,:‘ T T - 7
le 3

a3aVivo 3a 1 LR

|
M¥NVI8 = §

3

]

>
1 ¥MCA4 ANVLINSEY

tt
"

240 NOILYODOT HOHd 3dBL = 4

s¥oLvN3do = A 'gf ‘D

EALdW3 LS1T SIANAVINVA = M ‘N
ON LNd N .n
A)
:aN3937 50
-y
i <
o]
g B E
- e D o o a
. . Q ﬂ
FAqey (3 ey M Aey AV &
=]
-+ o (e}
5, imga i1jan Do ($) o
™
A R
—]
—4
o
INCS INOS 3INCS ’ 3Iwos M
a,
_ '
—4
. [)
_ {n-'.sav -} D v
o Lo Ad < (gd > id =
FAH (A < (g > e - g o
3NON AmgAD 3INON)
. . \r u
ganwv &
€ NOILYNILO I NOILVHIJO I
¥ NOILYH3dO Z NOILYH3JO
- T ——

APPENDIX X

APPENDIX X

and P{A) < P(C) z P{E). It is assumed %“at C is
the B item on the input list. Variable_ 8 and D

ave removed, C is replaced by RB; and a triple
is formed of B, C. and D, with a rzsultant Rﬁ'

3. Operation 3 rernoves the parentheses surround-

ing single variables.

4. Operation 4 removes all sequences FA4, where

A is a variable.

Subsequent to the execution of these four operations, control returns to

Operation 1 if the input list is not empty. Otherwise there is an exit,

In seven successive passes noted under Items c through i, beiow, thke
compilation algorithm is applied to the statement (1), as stored in the
list (2), and the set of triples is developed. In each of these passes, the
procedure is to work through the scheme cetailed in Figure X-1.

c. Pass] -

For Operation 1, the quadruples y, @, V, 8 do not exist, so that P(g) r
Y

P(B, ae{. ABS., -u.

For Operation 2, the quintuple {C + D) fulfills the requirements of a, V,
8. W, y, where P(a) < P(f) 4 P(y). Hence, + is replaced by RIO' where

R, , is the triple C+ D. Now C ani D are removed from the list.

10
For Operation 3, there exists no triple (, V,).
For Operation 4, there exists no triple », V, 4.

After Pass 1, the list (2) reads as follrws (where A denotes a blank):

L Index, i Item,
! 0 -
1 F
2 =
o~ 3 A
-240-

%&"‘Wﬂ“‘”’“.m’ - | T—— 4?.,—A —— _’WW PTG AT S N e R

APPENDIX X

Index, i Item,

4 +
5 B
6 *
7 . ABS,
8 {
9 A

10 Rio

11 A

12)

13 4

f;i_ Pass 2

Only the condition specified by Operation 3, obtains, namely (Rl 0). The
parentheses are removed from the list. After Pass 2, the list (2) reads:

Index, i _I_bgr__ni
0 k
1 F
2 =
3 A
4 +
5 B
6 *
7 . ABS.
8 A
9 A
10 RlO
11 Fa
12 A
13 -
~-241.-

APPENDIX X

";wﬁﬂﬂaiﬂﬁél

e T T S

e. Pass3

Only the condition specificd by Operation 1 obtains for *, .ABS., R 4.

10’
Hence, .ABS. is replaced by R..,, where R, is the triple O. ABS. RIO‘

Now, RIO is removed from the list. After Pass 3, the list (i) reads:

Index, i _It_e_x;r_xi
0 5
1 F
2 =
3 A
4 +
5 B
6 %*
7 R7
8 A
9 A

i0 A
11 A
12 A
13 ~

f. Pass 4

Only the condition specified by Operation 2 obtains for +, B, *, R7, 4.
Hence, * is replaced by R6’ where R6 is the triple B*RT Now B and R.{.

are removed from the list. Alter Pass 4, the list (1) reads:

LY Index, i Itemi
1 0 r
? 1 F
2 =
0 3 A

-242 .

APPENDIX X

—

[ad
I.,

3

e

(v

O 0 g O~ ! Wb
o

10
11
12
13

+ P> D>D D ®D

g- Pass 5

Only the condition specified by Operation 2 obtains for =, A, +, R6, 4.
Hence, + is replaced bv Ry wh re R4 is the triple A + R6. Now A and
R6 are removed from the list. After the Pass 5, the list (1) reads:

Index, i Jtem,

0 -

1 F

2 =

3 A

4 R4
5 A

6 A

7 A

8 A

9 A
10 Ja\ M
11 A
12 A
13 4

-243-

APPENDIX X

h. Passb

Only the condition specified by Operation 2 obtains for +, F, =, Ry, 4.
Hence, = is replaced by R‘Z’ where R.Z is the triple F = R4. Now F and

R4 are removed from the list. After Pass 6, the iist (1) reads:

H Index, i Item.
£ —_t —i
i 0 +
! 1 A
2 RZ
3 A
4 Ja
: 5 fa
6 A
1 fa)
8 Fa
9 A
10 A
11 A
12 A
13 4

i Pass 7

Only the condition specified by Operation 4 obtains for ¥, RZ’ 4. The
list is emptied. By now the compilation scheme has generated the follow-

ing triples in the order indicated:

» Index Triples
i Rio C + D
R.7 @) . ABS, Rl 0
R() B * R7
R F - Ry
-244-
i Y o K T— - © SRR ATTICWG - IO A SSRGS st

i

APPENDIX X

This is effectively (3) and is read as:
F = R4

A+R

6
A+ B*R.,

A + B* ABS. RIO

A + B*. ABS, (C + D)

n

j: Conclusicn

In this example, only one replacement statement was compiled. The compi-
lation scheme is intended to compile many replacement statements simul-
taneously, and the relative speed advantage cof parallel over sequential
compilation increases, within machine capacity, with the number {and
complexity) of statements to be compiled.

3. SIMULATION MODEL AND RESULTS

The compiler algorithm developed under Item 2 is designed to be imple-
mented on a parallel processor. Since no such machine is available for
checking out the algorithrm on a sarnple problem, simulation of parallel
compilation must be effected on a sequential machine. To effect the simu-
lation, code PARCOM (paralle]l compilation) was written in FORTRAN 1V
for the IBM 1410. Code PARCOM executes the compilation algorithm in
an effectively parallel fashion on & given set of replacement statements.

Coile PARCOM operates as follows:

1. A sequence of replacement statements, such as
(1), is read into the machine.

2. The symbols comprising the statements are ex-
amined and classified as variables, cperators, or
blanks; and precedences are assigned to the oper-
ators.

-245-

APPENDIX X

3. Tests specified by operations 1, 2, 3, and 4 in Fig-

ure X-1 are applied, in an effectively parallel fash-

ion, to each of the replacement statements.

=

*} 4. Based on the results of the tests, triples are formed

ﬁ and/or ‘'s’atement simplifications are made.

& 5 Steps 3 and 4 are repeated as necessary.

: g After each pass through the set of statements, code PARCOM prints out
the triples formed during the pass and the resultant set of statements.
To check the algorithm, the following set of seven replacement state-
ments vwas selected:

Number Statement

1 F = D+X*EC+X*(B+A*X)]+ R.P, . ABS. - 8§

2 G = -B+ (B%B - 4*A%C). P.2 /(2*%A)

3 H = (A + B). P.[CX(D + EXP/. ABS. X)]

1 1= A+B+C-D+E (4)

5 U=F-+G

6 V = H*]

7 W = - ABS (U, P, V)
The results of applying the compilation algorithrm to the set (4) are pre-
sented in Tables X-2 through X-13. These tables show (4) initially in the
forrn of tie list (2) and the results of successive passes. Table X-14

~ shows the entire list of triples generated.

i As an example of how the triples represent the replacement statements,
relected from Table X-14 are those triples into which Statement | was de-
composed, namely;

(.l\.‘

-246-

APPENDIX X

Index Triple
- ¥
1 L\ * X .
2 0 - s
15 B + Rl
16 O ABS, R,z
22 R P R16 a3
27 X % Rl 5
30 C + R27
35 X * R30
37 D + R35
40 Ry, * R,
42 F = R40

These corabine as
F =Ry

Ry;* Ry,

D+ R35 + R. P, Rlb

D+ X*R

30 * R. P. . ABS. R‘Z

D+ X*(C + RZT) + R.P..ABS, - §

it

D+ X=(C + X*RIS) + R.P..ABS. - S

H

D+ x*[?: + Yx(B + Rl)]+ R.P..ABS. - S

i

D+ X*[C + X¥(B + A*X)J +R.P..ABS, - S

The last statement is Statement 1 from the set (4).

The triples generated on each pais correspond to basic arithmetic oper-
ations that can be performad at the !ime of the pass. Hence, the compila-
tion algorithm generates triples suitable for parallel execution and pro-
vides a first approach to the recognition of low level parallelism within a

source program.

-247-

APPENDIX X

TABLE X-2 - REPLACEMENT STATEMENT SET

Resvlting statement

Index | 1 2 3 ;4 516 7

1 [[1 | 3 " | J »
2 |F G H 1 Julv|w
H 3 = = = == |=1] =
4 |p ((AlF|H]| -

5 + o A + 1+ | x| .ABS
: 6 |x B + B|{G|I|(
7 * + B N ERERR
8 |({ {) C .P.
9 |cC B . P. - v

10 |+ * (D)

11 |x B C * 4

12 | =* - * E

13 ¢ 4 (4

14 |B * D

15 |+ A +

16 |aA * E

17 | = C *

18 {Xx) P

19) P/

20) 2 . ABS.

21 +) X

22 |R /)

23 |.p ()
. 24 |.ABS.| 2 4
Y 25 - *

24 |s A

27 |4)
s 28 L 4

-248.

APPENDIX X

JABLE X-3 - RESULTS AFTER PASS |

oy

W‘ m -
o2&
& s
Mm - * ® n © ~ A N
ol
LE 2
g o q v
m ~
® 4 4~
nawo > | E
s e =
. o8 4.0V ak Qv
H v M o -
H.M 9 o : e dadda_""_Us_.o0.ada~da_ -
.n e @ + @ . o -
- .
et ds nam d. aadeV M cecda
HH
0O<0OmXED m]
DOXO(COX.I\l‘A‘ld\i\.O.’ .L‘Aa
N]
w co-nny oss1.omnnuuuunuuunuuuuuuum

-249-

7,

®

“.w VP ST AR

AT T

resern SAFETR TN SRR R

, :
DRI, PR RN

APPENDIX X

TABLE X-4 - °TSULTS AFTER PASS 2

b3 Contributing
) Index Triples statement
15 B + R, 5
16 o . ABS, R, 1
17 Rs » C 2
i 18 Ry / R, 3
$ 19 Rlo + c 4
| :o u . Ry, 5
% 1 v . RH 6
2
AE Reeulting statements
3 Index 1 2 3 4 5 6 ?
3
} 1 > - * [* * [
§ 2 F G H 1 A a w
3 | = = * = Ry Rap | ®
k) 4+ |p (A a a l A -
!] + R3 a A A A . ABS,
6 X a R.’ a A a A
7 - + A R” “ - A
8 ¢ (a ! a Rie
9 (o} A . P, - A
10 + R4 { A A
n |x |la jc | Ry, -
12 * - + A
13 (a (-
14 A A D
1% R is A +
16 a Rip | &
11 A a A
18 A 1) a
19) P R‘a
20) 2 &
2! +) A
22 R /)
23 P a)
24 l.‘ s A -
1y} -3 R“
26 a@ a
*
2?7 - A
i 2 -

NOTE: 4 denstes blank.

-250-

4 \aﬂﬁevm orett e g g %" o —— "W S R SN
i : -

APPENDIX X

e PR, PPN . 2 X e
B T L LR
N K

TABLE X-5 ~ RESULTS AFTER PASS 3

—

Contributing

Index

Triples

statement

22 R
23 R
24 D
25 R
26 o

.P. | R
- R
+ R
- R
.ABS. | R

16
17
18
11
14

= W N e

Resulting statements

o

ndex

2 3 4 5

-~

nowy
m Q0

O ~ O U o W N e
w

- 5w
B> DD D

[34
w

12
13
14
15
16
17
18
19
20
2l
22
23
2¢
s
26
2
28 “

s
DA > ~ > * A *4

S S o ~ 2 -~ B > > A R ¢ B - g v

s DD XD
[
'A.V
& x D D ™~ 0

P

> L4 -

0

T

[}
D D"

~
>>b>Db Db D> D

bbb D

T
+t bbb @™P P DB
(¥

o~
>

Dt > > > S -~ ~ I " S & B

[S

£ v

bbDPPDBD|®
N

‘DDDDD"?'

NOTE: A danotes

EECI T %

blank.

-251-

ik

" i

3

|

_ .
L o
m ..w.m R I P EER R
BE |l e ~
o £3 olaaaaqaaad
oL g °
1§] -
%] dlwjagaagaqaaaqg
= ®
u g
st A
“wwn ol & PR EEEEEEERE
B o ollad’] ® o
& | .m . -* u
W : Bl s waaadaa™_veagadaaacadga—s . '
‘e o
o 3 D - - . m
. Nl g e e’ ds a9a98ddd93dN w_~adaeaqg]s
0 m
m X -~ 0 - ~”
-, 5 R 3
& e 0w O + ¥ » « LU + 4 Q4494939499 . + 9 4 44 d
. | .
7]
u g~ W O “1234‘.mlo’u.9°‘023“67.90!‘2"5‘1.
T N N & u =t omp s et e e et s e 0 BN N P NN N ™
2
e
m_
) 5
<
. —
R T .- - 1

Sy g R SRR e

§

[
m m.m “|* 9af’aaaq9aaqary
53 e(ldadadadaaaaq
W 158 =
. > Elw|lddaqaq9aqga
m . e o .um.4 4944494949949 4949494 .
; & %2&4&‘ . ”
; o | m.’ o u . ~N
. txuqdaad 49”9 994999494494994a 7)
] A i u
R ﬂ‘ * o M - o=
) & “lt 0 uceflds 9944949494999 9adalda . ~qdaaar|3
1|7 i
[~4
M vVeox | sB e e —canla99999999_+asfaaan a
ol) °]
u uOlZ... ~ NN OB OO NN E N DWW O ~NAPH S-S
M3333 M "t et et e e e et et e RN
>

APPENDIX X

APPENDIX X

TABLE X-8 - RESULTS AFTER. PASS 6

Resulting statements

%
i
2
:
3
:

SIS

b

P e
mw ~3 O~ U b
o

—
D

bbb DODDDD DD DD * X+ U
>

™ty N

N e O

+
LD OPED D DD

(4%
s
LS

L Db XD

vy

[#3

o

4

1 4 6 7
i - . AtltA 1A A
2 F G H A A Al A
3 = = = A Al A A
4 (A LA lA LA
5 A A AjAa A A
6 A R AlAajAfa
7 R34 & AlAa|A]|aA
8 A A A A
9 A .P. A A
10 30 A a A A
11 a Ja A A
12 A R32 A
13 A 4
A
A
A
A

s ————

ﬁ:ﬁm . 4

C ontri'.‘iuting

APPENDIX X

- RESULTS AFTER PASS 7

-9

TABLE X

m R EEEEEEEEE
&b
-]
5 e oladaaa9q94qg94
2E| - -
e -
49 Slw|{a 9 aqaa4g
S* ¢
Sleldac<addadg9acaaqaaq
81
0 ™~ j e
o " " A
£ R EE L EEEEEEEEEEEEEEE
: F. -~
2 o |e s |
Ele ™ CIN 1L 5 yu 4448 d< d4dd49d4d44d4d3dddadd~daeaddg
» o " " ~
Mnpr..D+AaAAAAAAAAAAuAA;A&..AAA.
]]
.56 ‘1234567890123‘567890.12,‘567.
.M33 M - et e 4 et e et e e e A A N NN NN NN
L]

NOTE: A denotes blank.

-255-

o

APPENDIX X

TABLE X-10 - RESULTS AFTER PASS 8

Eoﬁfriﬁuting
Index Triples statement
37 D + Ras 1
38 P., 4 / Rb
39 H = R3 6 k]

Resulting statements

index | 1 2 3 4 [sje]7

1 - > . AlAaja} b

2 |F |G A Afalala

3 = = Ryy [a|afa)a
X 4 |a a A alajala
5 Ry, | & A alalala
6 |a A a alalala
; 7 |a a A alaiala
i 8 a a a A A
9 14 |a |a |a a

10 |a a a A A

1n |a A a A a

12 |a A a a

13 |a A A N

14 |a a a

15 |a A A

16 |a A a

17 ta a a

13 (A& A a

19 |a a a

20 |a a a

21 + a a

22 |a Ryg | &

2y Ry o a

4 24 a a “

2 |a a

6 | a a

27 . a

28 - [

P NOTE: A denotes blank. '

-256-

APPENDIX X

Triples

Resalting statements

444949

444949

q < 4 4

4 a4

Alajajlala
Ajlajlalajs

q
44949449

Ajatatlala

A

a

A
-
a

A

‘Index

10
11

12
13
14
18
16
17
18
19
&0
3

&
2

]

e

as
.3

37

NOTE: A danotes Wank .

«257-

SIS . g s

2
m - ~ldd9da9$a94a99494q9aq
58
R 2 E 44449444949
edd TS | 8”
(3] gg & -
£ g gol99aqaqaaq4q
< 2 :
s Heladaa9a9daaaaqg94qaaq i
[e 3 o
m X 1 §e]a994949994949dda4d4<cad4d9daaa4d4a3a4aa i 94
» lm -)
@
. e -3 Y| 949494949d49994999429994894d4243aa4d¢<]} *
L} n" . 'M
9 X
3 [-] s - "...
~ 4099494949449 494949437499944998949 7 |n
* sl 3
E u u123456789012345bwlsgoxza‘s‘ﬁ’.‘«m
m Mﬂ ..m llllllllllzz.&ll.‘lllr‘ V
b

e

R T, T s

APPENDIX X

- .
TR R A ¥ cel L o O . . . - . .) . L . R Y a

¢
i

APPENDIX X

m
8.
o
5]
'™
<
0
ke
m
[4
]
)
0
”
5]
-
3
b

=

e A Bt AR

=, ~l 944494949 494a8aqg949¢
Sal,
2 E | g ajo| 9 9 4 a4aaqa4g94
umm g
8% NP EEEREEE
[]
-
Slel]addaddcadadadaaaqad
. msAAAAAAAAAAAAAAAAAAAAAAAA
2] 8] 32
mm Sle] 4444944949999 9099G3939G4939339$9d393Q2Q9934
N R EEEEEEEEEREEEEEEREE R - I I - .|
‘| e »
L -1 i et M @V O~ OO mpa MW W DD OO e MY N C W
Mm M - e mq et et s s s e e N D N AN PN N M

-25%9.

NOTE: A devotes blank,

3
3

R e R LRI NSORIINIY R s it Grb st R N

APPENDIX X

BT R BN

AT e .
A o

TABLE X-14 - TRIPLE SUMMARY

-—T m
Index Triples statemont

1 A L] X 1
2 o - s 1

3 o . B 2
4 B . B 2

] 4 . A 2

6 z . A 2

7 A + B 3

8 E * P 3

¢ [e] . ABS, X 3
10 A + B 4
i1 D . E 4
i2 F + G 5
13 H L4 1 6
14 u P v 7
i5 B + R‘l 1
16 o] . ABS, Rz 1
17 Rs . C 2
18 Ry / Ry 3
9 R + c 4
20 v ® sz L}
21 k4 = R“ [
22 R . P, llm 1
T R, - Ry, 2
24 D + ll" 3
28 Ry - R“ 4
2 o .ABS, Riq 7
27 X » nu 1
28 1 . ltzs ¢
29 [+] . 336 7
h 1) c + g" i
b Ry P 2 2
¥ c . Ry 3
n w v lz’ 7
* Ry + ll“ 3
13 X * "30 1
.11 R, . P l!l 3
M D ‘. Ry 1}
» Ree i L 2
¢ N . Ryo]
d Ry, ¢ N !
41 a Ry 2
«Q r . Reo t

-1260-
- e "

-

P RIS s

APPENDIX ¥

The compilation algorithm may generate triples involving variables not
available at the time the triples are formed. For example, Pass 1 gen-

erated these triples:

Index Triple
12 F + G
13 H X 1
14 4] . P. \

Now the retulci © for Triple 12 [13] cannot be calculated until Statements
land 2 |§ and 4:‘ & e executed. Similarly, the resultant for Triple 14
carnot be calculated until Statements 5 and 6 are executed.

This "premature" generation of triples should pose no problem in tte
parallel proceassor, since Machine 1 (Appendix III) provides a "compute
on availability" option. That is, if the quantity A + B is to be computed,
the machine will delay the computation until such time as A and B are

available,

-261.

P . £ B B R]

BT R A

gt

APPENDIX XI - FURTHER NOTES ON PARALLEL COMPILATION

i

1. INTRODUCTION

The notion of parallel compilation is discussed and an algorithm for ef-
fecting it is presented ir Appendix X. Subsequent 2ttempts to implement
this algorithm on a parallel processor (Appendices VI and XV) revealed
the desirability of modifying it because implementation of the algorithm
in its present form may require the initiation of an excessive number of

parallel processor "tasks" (Appendixes XIV and XV) and lead to extremely
cumbersome control programs.

In this appendix, three mcdifications of the parallel compilation algorithm
are suggested. The first involves the translation of MADl’ 2 statements
into reverse Polish nq»ta.tion2 and testing for triple formation in parallel
with input operations. In the second, the tests for triple formation are

selectively applied a; compilation progresses. In the third the form of
the algorithm is changed.

Throughout this apwendix, the class of MAD statements considered is re-

stricted to replacement type statements invciving nonsubscripted variables.

For a review of parallel compilation, see Appendix X,

2. PROBLEMS OF IMPLEMENTATION

The parallel compilation algorithm described in Appendix X specifies a
sequence of passes in which the concurrent application of a set of tests to
a list of replacement statemonts written in the MAD language results in
all possible triplc formations and/or staternent simplifications. The
algorithm, as presented in Figure X-1 of Appendix X, suggests that ap-
plication of all the tests to all possible sequences of contiguous items

-

aSuperior numbers r the text refer to items in the List of References, ItemS5,
Page 283,

-263-

APPENDIX X1

taken 3, 4, and 5 at a time. Investigation, however, reveals that in a

SRR e S A

computer implementation of the algorithm such a procedure would be
wasteful of machine capacity. As a case in point, consider the expres-

sion
F = A+ B*.ABS. (C+ D). (1)

On the f{irst pass over (1), the algorithm would combine C, +, D into a

triple, say R’l' Clearly, on the next pass it is futile to look at items pre-
: ceding the séquence (» R1,) in the hope of obtaining triple formations and/-
or statement simplifications. Hence, to assign machine capacity to such

testing is wasteful.

While this potentially wasteful testing is easily recognized, its remedy

}?
i
:
>

is not. Just how one might program a parallel processor to test those
(and only those!) contiguous sequences of iterns where the specified con-

ditions may obtain is a problem dealt with in Item 3, below.

Yet another problem incident to the implementation of the algorithm stems
from the fact that the several tests, being of different complexity, require

different amovnts of time for machine execution.

This disparity of execution time leads to some rather severe programming
problems associated with triple formation and/or statement simplification
and maintenance of a valid item list. These programming problems should
not be attributed entirely to the form of the parallel compilation algorithm;
much of the difficulty of program construction is due to the fact that both
the parallel processor and its associated programming language are radi-
cally new and there exists but little experience on w.ich to draw in the

construction of programs.

f As a means of obviating the prcblems mentioned above, the follc #ing pos-

! sibilities were considered: preliminary translation of input sta' ‘ments

to revarse Polish notation, and innovations in tna utilization of the parallel
processor programming language. Both possibilities were investigated

« with fruitful results. An unexpected result of the investigation was the

~264-

APPENDIX XI

development of a completely new form of the compilation algorithm. The

results are detailed in Item 3.

3. SUGGESTED MODIFICATIONS

a.

v

i
¥
H

.
H
§
'
H
:

General

In this section, two methods of implementing the parallel compila-
tion algorithm on the parallel processor are discussed. The first
method involves the conversion of MAD statements into reverse
Polish notation (RPN); the second involves programming innovations.
Subsequently, a restructuring of the parallel compilation algorithm

that offers greatly increased speed of execution is presented.

Reverse Polish Notation (RFPN)

Polish notation refers to a method of representing logical formulas
developed by a Polish mathematician, J. Lukasiewicz. 3 The nota-
tion provides an unambiguous sequential specification of the order
of execution of logical and arithmetic operations without the use of
parentheses. The particular form of Polish notation used here is
RPN. In RPN, operators are written after the operands on which
they operate. A necessary condition for the use of RPN is that each
operator be associated with a definite number of operands. For ex-
ample, A + B would be written in PN as AB+ where + would be un-
derstood to operate on the two operands immediately preceding it
(A and B). Ope¢rands may in fact be the results of operations. For
example, the expression A+B*C is written in RPN as ABC*+ where
* operates on B and C, giving B*C, and the + operates on A and BC*,
giving A+B*C. The ability of RPN to obviate the use of parentheses
is seen by considering the expression (A + B)*C, which would be
written as AB + C*.

Implementation of the parallel compilation algorithm may be facili-
tated by first translating MAD stxtements into RPN and then con-
structing triples from the RP} representation. The MAD statement (1):

~265-

-

APPENDIX X1
F = A+ B*.ABS, (C+D),
% =
§ A would appear in RPN as
3 &
5
! Z FABCD + . ABS, * + = (2)
ig which, for purposes of compilation, would be interpreted as
i
; R, CD¢ C+D
“ :
; R2 RI.ABS. 0 .ABS. R,
R3 BRZ* B * RZ
g R, AR,+ A*—R3
RS FR,= F = R4
which is read as
F =Ry
= A+ Ry
= 3
A+B RZ
= A+ B% . ABS, Rl
= A+ B* ABS ((C+ D)
which is just (1).
Figure XI-] gives a flow chart that specifies a method of translating
‘- MAD statements into RPFN. The method depends upon the specifica-
tion of precedenccs for operators and the use of a stack. Table XI-1
- t gives the required precedences. Note that these precedences differ
slightly from those of Table | in Appendix X in that it includes oper-
atore allowing the translation of statements involving logical oper-
c’ ations.

-266-

T g e G AN R RPN
- - o>

APPENDIX XI

LET l', .2' A TR DENOTE THE INPUT STRING (LEFT TO RIGHT]
51, b2' see bj, *++» DENOTE THE OUTPUT STRING (LEFT TO RIGHT)

l‘, ‘2' s, .k' ++» DENOTE THE STACK (BOTTOM TO TOP)

START

b o AP nae

.
o2

L il

VARIABLE

P (X) < P(Y) MEANS OPERATOR Y HAS HIGHZR PRECEDENCE THAN OPERATOR X

Pi{} SHOULD BE LESS YHAN ANY OPERATOM

P (UNARY] > P (BINARY)

NOTE:

WORXS FOR BOTH UNARY AMD BINARY OPERATORS A3 LONG AS THEY ARE
UNIQUT (.5 UNARY = i§ DISTINCY FROM BINARY = IN iNPUT).

Figure Xi-1 - Translation {rom MAD to Reverse Polish Notat'2n

<267~

:

LY

e B R Wt

TR AR B et x

APPENDIX XI

TABLE XI-1 - PRECEDENCE HIERARCHY FOR

RPN TRANSLATION

Operator Description Precedence
-ABS., -, Absolute value, unary Highest
minus
. P. Exponentiation
%, / Multiplication, division
+, - Addition, subtraction

, £, >, 2, 4 |Relations (with usual
interpretations)

Not

And

Or

= Equals (.sml:ostitution)’°l

< > 7

G Begin statement, and Lowest
statement, open paren-
thesis, close parenthesis

%
In the accompanying discussion only := occurs and is
written as =

Tre translation proceeds basically as follows. I[tems are taken, left
to right, from the input string. If an item is a variable, it is added,
in a left-to-right fashion, to the output string. If an item is an ope. -
ator, its precedence is compared with the precedence of the topmost
item 'n the stack. I the precedence of the input item is greater than
or equal to the precedence of the stack .tem, the input item is added
to the top of the stack. otherwise, the input item "sinks" down the
stack until it encounters & stack item whose precedence is no greater
than that of the input item. As an input item sinks in the stack, those
stack items whose precedances exceed that of the input item are re-
moved fro- .- ‘op of the stack and added to the output string.

-268-

APPENDIX X1

o A R NI, 7

Parentheses require special comment. An open parenthesis, when
encountered. is placed on the top of the stack. A close parenthesis,
when encountered, sinks in the stack until a stacked open-parenthesis
is encountered at which point both are removed from further consid-
eration. Those stack items past which a clore parenthegis sinks are

added to the output string.

Certain comments are also in order regarding relative precedences
of unary and binary operators involved in the translation process. It
is necessary, first of all, for unary operators to have higher prece-
dence than binary operators. Consider the following cases. The

string a. P. b. P. c may be interpreted either as abc

or abc, the choice
being determined by the direction of scan (left to right or right to left)
of the input string and the placement of the equality sign on the paths
out of the precedence test box for operators (seec Figure XI-1). But
the string a + B* . ABS. C admits of only one interpretation, namely

a + (b¥({ . ABS. (c))). With the precedence of uriary operators greater
than those of binary operators, the expression a + b* . ABS. C would
translate, correctly, into RPN as abc . ABS. *+. However, if the
unary operation had lower precedence, ’‘he translation would produce,

incorrectly, abc* + . ABS, which impliss . ABS. (a + b¥*c¢).

Further, all unary operators should Le of equal precedence. Suppcse
one had to translate an input striag . . . BIUIUZ R UnVBz Ce e
where the B's represent binary operators. the U's unary operators,
and V a variable. {Many unary operators are possible; for example,
“u .ABS,, sin, log, etc.) Correct translation requires that the out-
put string appear in RPN as . . . VU“Un.l o Ul . . . which, in
turn, requires that the unary operators Lhave equal precedence.
The process of parallel compilation utilizes RPN in the following
fashion. As MAD statements are read into the parallel processor,
they are converted into RPN. As soon as an operator is inserted into
the RPN string, the parallel processor begine the icrmation of the

L

~269-

L e |

APPENDIX XI

corresponding triple while continuing the read-in process. This

procedure allows compilation to proceed in paralle! with input,

The use of RPN in the compilation procedure, as outlined above,
greatly simplifies the task of the programmer in implementing the

compilation algorithm on a paraliel processor. However, the use

of RPN in the implementation of the compilation algorithm seems

unavoidably to result in a parallel processor machine program that

e

T O LTI

is rather slow when applied to a single statement. The slowness of
a program using RPN is due mainly to the sequential nature of the
translation process and the well-known inefficiency accompanying
the constraint of the parallel processor to a single sequential mode
of operation. Although the effects of this can be mitigated by the
concurrent compilation of many statements on the parallie! proces-
sor, further efforts were made to discover a simple, easiily pro-
grammed method of implementing the compiler algorithm that would
be free of slowness due to inherent sequential characteristics. Some

results of these efforts follow.

o

Programming Inuovations

As poninted out in Item 2 above, initial attempts to implement the
paraliel compilation algorithm met with severe programming prob-
lems which in turn led to the use of RPN in the compilation process.
But the use of RPN was not wholly satisfactory. Hence, renewed
efforts were made to construct an efficient compilar program free
of the sequential limitations irherent in the use of RPN. The result

was an implementation whose {low diagram appe=rs in Figure XI[-2.

The implemertation of the compilation algorithm as given in this il-
lustration proceeds as followa. Reading left to right, the ith item in

a MAD replacement staternent is denoted by Li; with each L‘ {8 ax®oci~
ated a number, Kx' which may be |, 2. or 3 To each L, is asnigned
a par~allel processor tark {the tasks proceed in paraliel) that deter-

o mines whether or not Lt may be used in triple formation or statemant

=3

- .= - TS WRLX T AT T T e -

T TR G et L e .l e SRR

ST/

WHAT

«.] [rEAD AND
ERASE K,

!

fL. L, L.
ERASE LI L’ .

v Tie2
i !

+ 2

EAT AND
] ERASE K. !
REAC AND . READ ANO
SE K. TREAT L, __AS -~
ERASF. Ki -1 ERA!}E i *_2 i - 2 u
— vn—————

Y
L. it P
i{'« Peq! !Li)')

£ . x
2+ K, 3~ K. '
£ i

TREAT L. __ AS -

o VARIARLE

v
! & SYOP TEITING
Pix) Py 3 WHAY IR YHE RELATION OF i) TO iy

- 2 UMARY MINUS

= 2 DINARY MI1MUT

s x UMDETEAMINGD MIiNUS

- IWW‘ - 2w

APPENDIX XI

WHAT IS L 7
.

! ; , (5. 1SV oy
—— ' l/ 1 X

——

GENERATE GENERATE
-, TRIPLE 7).2es TRiPLE
TREAY L. 2 Vd oo
i - S
AS - ; 1
u .
: READ AND \ READ ANC
/ ERASE K, JERAsE K,

FiL,e) N -

> WAIT FOR BOTHW

4.' <
: . PIL):P(L, 17 BiL B)?
[z R B PR ”“"“(i) i 2)
T T S
{ GENERATE TR!PLE"—& ’ i

READ AND READ .ND
ERAE K. ERASE X,
P -2 LR

CHANGE

%
x\

w
-

-t

WAIT FOR BOTH

\— i

CHANGE 4

Piyt

Figure X1-2 - 'low Chart for Paralle! Compilation

271

APPENDIX XI

e

i R SRR = o
‘ -l

simplification, tasks assigned to variables or resultants of triples
arc suspended; tasks assigned to operators form triples or state-
ment simplifications if test conditions are met. If test conditions
fzil to be met, the task detects whether failure is due to inappropri-
ate items on the left side, the right side, or both sides. This infor-
mation-is stored in K, and used to re-initiate testing whenever
ciianges are made in items immediately to the left, right, or both
sides, Ki = 1, 2, or 3 indicates blocking on the left, right, cr tcth,

respectively.

NOTE: In Figure XI-2, the precedences of Table XI-1 are used.
Litj denotes the item j places to the right (+) or left (-) of Li; thet
is, "blanks" generated by triple formation and/or statement simpli-

fication are ignored.

The implementation of the parallel compiler algorithm specified by
Figure XI-2 offers a solution to a problem posed in Item 2, namely:
Hcw does one program a parallel processor to test those and only
those contiguous sequerices of items whore specified test conditions
may obtain.. .This, of course. allows economical use of machine ca-
pacity in that all futile testing is avoided and tasics are assigned only
to those items where triple formation and/or statement simplification
is occuring. Further, the controi features given in Figure XI-2 (for
example. the "wait icr both" boxes) allow the maintenance of a valid

and urambiguous itern list throughout compilatior.

Alihough the m.ethod of Figure XI-2 appears to offer an efficient,

easily programmed implementation of the paraliel compilation alog-
rithm, preliminary timing estimates indicate that it is not significantly
faster than the RPN method.

Restructuring of the Algorithm

An examination of the compiler algorithm reviewed in Appendix X re-
veals that total parallelism of compilation has not been achieved. The

reason is as {ollows: Although the algorithin specifies on cach pass

27

3-

APPENDIX X1

the concurrent execution of all poseible triple formations and/or
statement simplifications, the procedure is limited in that it exam-
ines only contiguous sequences of iteme taken 3. 4, or 5 at a time.
Hence, several sequential passes of the algorithm are necessary to
complete compilation. This limitation is also present in the modifi-
cations described above.

The question arises as to whether or not an algorithun can be devel-
oped that will concurrently examine each item of a list in terms of

all other items with which it may ultimately be associated in the com-
pilation process, and specify triple formation and/or statement sim-
plification in a fashion that achieves optimal compilation speeds.

This question is now considered.

Consider the MAD statement,
Z = (A+B)*C + D*((E*F + G)*H + 1) , (3)

and the precedence assignment

Symbol Precedence

Variable 3+ 4N
w 2 + 4N (4)
+ 1 + 4N
= 0+ 4N

where N denotes the: number of parentheses sets enclosing the sym-
beol.

Using the effective precedence due to parentheses inclusion, (3) can
be written in a list as

Symbol Precedence Symbol Precedence
2 3 +
v 0 . B 1 {5)
A 7 * 2
~274-
— w-‘—“» e L

4

APPENDIX X1
Symbol Precedence Symbol Pracedence i
C 3 + 9 ‘
+ 1 G 11
* z
0 > 6 5)
E 11 + 5)
* 10 I 7
F 11

The list (5) may be interpreted in graphical form as shown in Figure
XI-3. It will be noted in this graph how precedence modification, due
to parentheses inclusion, separates groups of symbols on the basis of
parenthetical grouping and obviates the need of further retention of
parentheses. The beginning and ead points of the statement are arbi-

trarily assigned a precedence of -wm.

12

AR

10

PRECEDENCE

Figure Xi-3 - Graphical Interpretation of List (5)

-275-

APPENDIX XI

In the process of compilation, each triple is formed from two ordered
variables (or resultants) and a binary operator (one variable or result-
ant and a unary operator). Consider a single variable that is preceded,

and followed, by binary operators. In triple formation, this variable

will Le included in the triple corresponding to whichever of the two
binary operators is of higher precedence. For example, from the
statement (3) select (A + B)*C which is stored in the list {5) as

Smbol Precedence

QO # W + >
W N g

"Select the variable B that is preceded by + and followed by *. Because
of parentheses inclusion, the effective precedence of + is 5 which is
greater than 2, the precedence of *, and thus B is to be used in the
triple correspcnding to +. B will be used in the right side of tha triple

corresponding to + since + is on the left side of B.

As shown in Figure X1-3, B is at a peak on the graph as are all vari-
ables. To find the operator in whose triple a variable will be in-
cluded is quite simple. One simply "looks down the slopes” to find
the "nearest" {nurnerically greatest) operator, with which the vari-
able is then associated. In the event that a variable has operators of
equal precedence on either side, the right operator will be corsidered
as having greater precedence. This convention conforms to the re-
® quired interpretation of precedences in a concatenation of unary oper-

1 ators.

Now, since each operator will generate a triple, consideration must
be given to thes placement of the corresponding resultant in other

triples. An examination of Figure XI-3 will quickly suggest how

276~

APPENDIX X1

resultants can be combined into triples. Each operator corresponds
to a "valley" (perhaps "plateau" in the case of concatenated unary op-
erators). But each opzrator also represents a triple and correspond-
ing resultant that must be treated as a variable. Hence, for each
operator one must search the graph, both to the right and the left,
until on each side an operator of lesser precedence is encountered.

The resultant is then associated with the triple corresponding the op-

erator of higher precedence (rightmost operator in the case of equality).

Basically, then, triple formation proceeds in a leveling process that
consists of combining variable "peaks" of a graph such as that given
in Figure XI-3 into "valley" triples whose resultants are then treated
as variables and the process iterated. Parallelism is injected into
the procedure by concurrently associating each variable and resultant

with the triple in which it will ultimately be located.

The methed of compiling MAD statements into triples outlined above
involves searches for items of lesser precedence both to the right and
left of a given item from a list such as (5). These searches can be
accomplished more easily if such a list is stored as a part-of an ex-

panded list defined as follows:

1. Let n symbols, such as those in the list (5), be

indexed 1, 2, . . . , n
2. Let p be the integer such that 2P ~ ben+2s
2P, Construct a list of items indexed

2,3,4,...,2P 2P+, 2P+v2, ...,

P+n 2P+n+! (6)

where n denotes the number of symbols from a
list such as {5) and 2P+ denotes the index for
symbol i from a list such as {5). The other in-

dices of (6) denote dummy items that will be

-277-

» x{“f’f"“ B

vay

APPENDIX XI

assigned a precedence defined below. These

dummy items wiil be of value in treeing the

searches for items to the left or right of a given
item that are of lesser precedence. Figures XI-
4 and XI-5 present methods for the requisite

searches.

3. Using the precedences given in (7), or in some

o T R L, ¢ ﬁﬁ'mﬁm ik

similar but more comprehensive list, den~te by
M(j) the precedence of the jth item of (6}). For
2P+ 1 €3¢ 2P+ n, M(j) = M@2P + i), the pre-

cedence of the ith symbol from a list such as (7).

s,

4. Let M(2P) = M(2P+n +1) = -. That is, drive
the endpoints of a graph such as that given in

Figure 4 to minus infinity.

5. For items of the list (8) indexed j, 2 & j < 2P,

define precedence as follows:

min [M(2j), M(2j + 1)
b. If cnly M(2j) is defined, let M{j) = M(2j)

<. If neither M(2j) or M(2j + 1) i® defined, then
M({j) is undefined

a, If M(2j) and M(2;i + lﬁ are defined, let M(j) =

Undefined items will not affect the search pro-

cedures specified in Figures 7 and 8.

Tablc XI-2 illustrates the compilation procedure described above,

The statement (3) in the list form (5) is used as an example.

-« An example of precedence determination for an expanded list such as
(€) is given in Table XI-3. Again the statement (3) is used as an ex-
ample. The number of symbols in statement (3), excluding parenthe-
ses, isn = 19, hence for p such that 2P~ be s 2 S 2F p-os.

This accounts for the expanded list index running from 2 through 52

in Table XI-3.

-278-

m s o ey e g e | s - —— . i v - W‘W

APPENDIX XI

&
;"ka'
3
L
i

Lj 1S THE INDEX OF THE RIGHT-MOST SYMBOL TO THE LEFT OF
SYMBOL j WITH LESS PRECEDENCE THAN THAT OF SYMBOL).

FORALL j's. 1 <j <n

f
§

%(L.-H SR L Y op0?
]

Iuo
wiew
7N
L 2 ;

g L. 1 2 porint L. - 2 Lo EXIT

Figure Xi-4 - Subroutine for Finding Lj

-279.

3 v Wm— " "
et Se— v T "W'."" —

APPENDIX XI

&
&
%

Ri IS THE INDEX OF THE LEFT-MOST SYMBOL TO THE RIGHT OF

SYMBOL j WITH LESS PRECEDENCE ThAN THAT OF SYMBOL. .

FOR ALL j's, 1 Sj e

YES—il

R o+ R e R, EVEN?

lw

M(j): M(R,)

et R 2 hrmamad R~ 2 4 R, e EX Y

Figure XI-4 - Subroutine for Finding Rj

-280-

i —— o ra——t - —— o S——— "-‘“‘ -~ y J—
- N g * ~ -

APPENDIX XI

TABLE X1-2 - EXAMPLE OF THE COMPILATION
PROCEDURE FOR STATEMENT (3)

Index Symbol | Precedence cedence item
j j of symbol j | Lj Rj | of Lj and Rj Triple
1 z 3 0| 2 2 z
2 = 0 o | 20 20 OHO
3 A 7 2| 4 4 A
4 + 5 2| 6 6 OQO;
5 B 7 4] 6 4 B
6 » 2 2| 8 8 O«
7 c 3 6 | 8 6 o
8 + 1 2 | 20 2 ®+®
9 D 3 8 | 10 10 D
10 . 2 s | 20 8 ®+w
1 E 11 10 | 12 12 E
12 . 10 10 | 14 14 M«®
13 F 1 12 | 14 12 F
14 + 9 10 | 16 16 OHO,
15 G 1l 14 | 16 14 G
16 . 6 10 | 18 18 OHO)
17 H ? 16 | 18 16 H
18 b 5 10 | 20 10 ORO,
19 1 7 18 | 20 18 I
NOTE: Lj[R]) denotes the rightmost [leftmost] symtol to the left [righy

of symbcl j having precedence less than \hat of symbol j.

-281.

APPENDIX X1

TABLE XI1-3 - EXAMPLE OF LIST EXPANSION AND

PRECEDENCE DETERMINATION FOR STATEMENT (3)

Statement
Z = (A+ B)*L + D*((E*F + G)*H + I) (3)
Precedence table
Symbol Precedence
Variable 3 Add 4 for every set of
% 2 parentheses enclosing a
symbol
+ 1
= 0
n=19 2P t<ns282Papp=5
i M(i) i M(i) i M(i)
A -0 19 2 36 5 -
3 - 20 1 37 7 B)
4 - 21 b 38 2 =
5 1 22 10 39 3 C
) - 23 9 40 1+
7 24 6 4l 3D
8 -0 25 5 42 2 =
a 2 26 -0 43 11 ((E
10 1 27 44 10 %
il 9 25 25 1l F
12 5 29 46 9 -
13 e o) 30 47 Il G
14 3l 48 6 =
15 32 -0 49 7 H
lb - 33 i 2 50 5
|7 0 34 0 = 51 il
18 5 35 T (A 2 -
~282-

- — e = YR T AT TN T TR e

APPENDIX X1

Figures XI1-4 and XI-5, respectively, present flow charts of search
precedures for finding L. and R,, where L, iR | denotes the rightmost
[leftmost:l symbol to the {eft riéht of sym{)olJJ having precedence less
than that of symbol j. These search procedures can Le executed con-
currently in approximately Zlnzn steps where n is the number of sym-

bols (less parentheses) from a statement such as (3).

4. CONCLUSIONS

In this appendix, three modifications of the parallel compilation algorithm
have been presented. The tirst involved preliminary translation of re-
rlacement statements into reverse Polish notation; the second involved
innovaticns in the use of the parail-l processor programming language;

the third specified a restructuring of the algorithm.

The first two modifications were easily programmable but did not result

in aignificant speed advantages. The rectructuring offered by the third
modification appears to provide a maximal utilization of parallelism in-
herent in the compilation process. The restructured compilation algorithm
has not yet heen programmed for a parallel processor nor has it been sub-
jected to a detailed review, It is recommended that further study of the

restructured parallel compilation algorithm be carried out.

% UST OF REFERENCES

1. University of Michigan Computing Center: Michigan Algorithm De-
coder. Ann Arbor, Mich., June 1963.

2. Wagner, P. (editor): IntroductioninSystam Programming. New York,
N. 7., Academic Press, 1964,

3. Arden, B., Gailer, B., and Graham, R.: "An Algoritlun for Trans-
lating Boolean Expressions.” Journal of the ACM, April 1962,

-283.

ok R R S e

[

H
i

C APPENDIX XII - PROGRAMMING OF THE SEQUENTIAL

COMPIILLATION ALROGITHM FOR THE IBM 7090

1. INTRODUCTION

This work was performed under Contract AF30(602)-3550, Advanced Com-

puter Organization Study. A sequential algorithm for compiling subsiitution

5
§f expressions was written so that a comparative analysis to a parallel ma-
3 chine could be made. 7The IBM 7090 computer was chosen as the sequential

. . a
computer on which to make the comparisons.

Reference was first made to a paper by Arden, Galler, and Graham.b An

extensive analysis was made of the compilation ¢f a general complex sub-

:3 stitution expression, and further investigation led to a general derivation
e of a timing equation for compiling simplified expressions.

The comnparative analysis of sequential versus parallel compilation is made
in Appendix XIII.

2. DESCRIPTION OF ALGORITHM
a. General

In this IBM 7090 compiler algorithm, reasonable assumptions have
been made as to what will be the format of the inpu: string or substi-

t::tion expressions. Due to the hierarchy of the operators, the oper-

ands are considered as haviag a zero level of hierarchy. Theoperators

*IBM Reference Manual, 7090 Data Prccessing Systen. Poughkeeprie, N. Y.,
international Busincss Machines Corporatior, August (961.

bArden. D, W.: Gallry, B, A.; and Graham, R. M.: An Algorithm for Trans-
lating Bocl-an Exprcssions. Ann Arbor, Mich.. Uriversity of Michigan, Gc-
tcher 1961,

-

.285. %:

R

APPENDIX X1l

listed below corstitute an unalterable basic set wheoee meaning (seman-
tic content) is used in the decomposition of expressions. Boolean ex-

pressions will not be considered here but it is easily seen that .0 in-

clude them one would merely extend the limits of the algorithm. All
arithnietic operators except the exponential will be generated into an
object program in single precision arithinetic. The overall program
parkage will require input/output routines and an exponential subrou-

tine (EXP) that is available in the MAD compiler. The symbel "-" is

2
L

used in statements to indicate both the unary (on« operand) and the bi-

nary (two operands) onerator; the context inndicates which is intended.

Certain arithmeti. operations must be compiled first in order to exe-
cute the object program correctly. It is for this reason that a certain
level of hierarchy is assigned tu each of the input etring of items. In
this algorithm, the chosen hierurchy (or precederce) is as shown in
Tabie XiI-1.

TABLE XII-1 - HIERARCHY OF INPUT ITEMS

item Definition Preceder.ce
. ABS. | Absolyte Value 12
-u Unary minus 11 Operators
{ Exponentiaticn 10
¥ Multiplication 9 1
/ Division 8
Binary minus 7
' Plus b q Operaiors
= Substiution 3
~ (Left parenthesis)
i) Right parenthesis 3
' b L.eft terminator 2
4 Right terminator !
. v Constant aor vari-
& able 3 Op=rand

AL e e B e R

-286-

APPENDIX XI1

If the input items used in an expression are compiled in accordance
with this hierarchy, there will result an object program in 7990 code

that when executed will accomplish the desired arithmetic operations.

Througt .ut the discussion, the following symbols are used:

PRI’..C(Sj) = Precedence of current operator
PREC(SJ._ {} = Precedence of previous vperator
53 = Current referenced input string item
La = Current referenced intermediate string item

§ = Input string index
a = Intermediate string index

R. = Current triple resultant pointer

= First generated instruction of a triple
MiZ = Second generated instruction of a triple
Mi3 = Third generated instruction of a triple

Mi4 = Fourth generated instruction of a triple

The compiler discussed here involves an input pas. that will assign
the constant/variable machine locations and the¢ correct hierarchy to
the input <tring. Once the input string .s .n this form the various
items are placed on a list {SLIST). The major function of the algo-
rithm involves a single scanrmicg of the expressien from right to leit
(up the SLIST) and retaining wperands, operations, relations, etc.
¢n an intermeadiate list I {LLIST) un.il an operation or relation (5;)
occurs which is ¢f 1o - r precedence then the immediately prv{‘vdi.ng

vperation en the list (8‘_ 2)‘

Wher suck 4n operation or relation as § 18 vncountered, 5) , 1§ vom-
i I=

pried. gxcept for the case ol exponentiation the compilation consists

and Mii)'

of .reating obiect coding of three instructions (M MiZ'

~-287-

APPENDIX XII

The three instructions created for a + b are Mil = CLA a, Miz =

FAD b, and Mi3
sult of performing the oper=tiun a + b which will be called a triple for

= STORi, where R, is th: current location of the re-

this discussin=z,

Input String Discussion

The input routine must be capable of reading a statement into the 7090
and assigning relative addresses to the various constants and variables
(that is, count the different operands). If a variable or constant {op-
erand) is detected, the sign bit of the machine word referencing its
location (bits 21 to 35) is made one (bit 0) and the decrement (bits 3-

17) is zero. An operand format is sketched below.

' {ZERC) & RELATIVE LOTATION

$1,2 1% 17 28 s

To execute the various arithmetic operations in the proper sequence,

a certain level of hierarchy is assigned to each operator !see Page 284),
In the case of operators, only the hierarchy mentioned on Page 284 is
necessary to generate the correct chbject code and it must be contained
in the decrement (bits 3 to 17) field of each item word. An operator

format ie sketched below.

o) (ZERO) ¢

$1.2. 3 17 20 "

For example, should there be a complex expression such as

Z = (A*B + C*D) * (EIF + .ABS.1) + (JIK - L/M}/(-P + Q*R) ,

Ny

the input routine would be expected to produce the array shown in Fig-

ure XIlI-1 (see Apperdixes] and IiI).

Input Data Discussion

After the object program has been generated, the DATIN subroutine

-288-

APPENDIX XII

INPUT STRING CONSTANT, VARIABLE, AND
{OCTAL) RESULTANT POOL
. $123 DECREMENT 17 21 ADORESS 35 RESEAVED FOR
SLiST LEFT TERMINATOR 00t | 0| 00000} 0 } 00000 ((ZERO)

. 00000] C0001 z - 4
[00003 0. 00000 2 A .
0 00004 0 60000 (””_—_,,wﬂ”')
4 02000) 00002 A c
o 00011) 00000 . o
4 00000) 00003] (3
o 00006 o 00000 + F
4 06000 o 00004 < i
[00011 [0000C . J
4 00000 o] 0000s] K
0 00003 o 00000) L
0 00011) 00000 . ~
0 00004 0 00000 { P
a 00000 0 00008 3 Q
o 00013 0 00050 1 R
4 C0000 & 00067 £
0 00006) 00000 +
) 00014 0 00000 .ABS.
4 00000 [00010 |
o 00003) 90000 }
[00006 [o000 | ¢
[00004) 000¢y (
4 00000 [} [+ e R J 1LOCATIONS ASSIGNED DURING THE
0 [SYE) [00000 * IMPUT ROUTINE AND FILLED WITH

4 | 00000 ° 00012 x FLOATING POINT VALUES BY THE
° 00007 ° 00000 - DATIN ROUTINE
6 00000 ¢ 00013 L

2

© 00019 0 00000
4 00000 [00014
0 00003 0 00000)

K 00010 ° 00500
o 00004 ° 00000 {
Q 00007 ° 00000 -

|« 1 oooo To] esors |

| o] ooxe 0 000 |

_t] emee o] oo 1o
-] 0001 [] [) *
. 00000) 00017 "
° 00003 o | Tooood)

Figare X1lI-i - Furmat of an Input String of Items

-289-

AR TR AN NP ¢ " ,ww ") - e s
- - ""‘“\; —

APPENDIX XII

must be capable of storing floating point values in the memory loca-
tions selected by the INPUT subroutine. These values wili start at
POOL+1, etc. The first location POOL is cero. If the input data are

é in integer form, provision must be made to convert it to floating point
i numbers.
p d. Fiow Diagram Genera! Description
In addition to the terminolcgy used in the general discussion of this

i A

section, the following additional symbology pertains to the flow dia-

grams:

—emeans "is transferred to"

R, + l--’Ri means "-Ri is increased by one"

B pmckiisire oy

The flow diagram in Figure XII-2 is by no means complete from a sys-
tems standpoint as mentioned above. The operaticnal system will re-

quire input/output and, if desired, object program listing routines.

e, Subroutine Descriptions

(1) Absolute Value

The absolute value may be detected by (1) the initial scan, or (2)

if preceeded by T-triple. If a twelve is detected in the decrement
field of an itern on the inpt string (SLIST) during the initial scan,
the subroutine SCOPEM + 2 is entersd., This subroutine will pro-
duce three instructions: (1) CLA POOL, which makes the AC reg-

ister equal to zero when executed; (2) FAM La , which adds to

-1
the AC register the magnitude of the contents of the previocus item
on the L list, providing it is not an operator: and (3) STO Ri'

which stores the final vesult of the operation, . ABS, La r

The iocation of the result after executing these instructions is put
on the L hiit to keep account oi the intermediate steps. The result

peinter 18 increased by one and the program returns to the start to

- 24

)’Q
b P g e s e i i T SN

-2

OTHERS
START
PRI - CASE| (R,) CASE
|LIST AND 1
EXECUTE .
. La-1 » L'a-z AC ~» L

8j + TEM® STORE
cu-n.a_s-»uh
8. + TEMP STORE
- M- .
STO=L, _, * M, i
CLA - L. - M,
NQP“R(+‘ hd Mi3 a-1 it
P-L)
Re » La-3 © a-3 12
a-2 -+ @ S'l'C)-Ri + Mi! 8
- TEMP STORE
R R -+ i
1+ 1 f a=-3 CLA =L -
8. + ac a= i
LI —J {FORM TRIPLE) oP =L - M.
a-3 12
R+ R, -
(Y0 R STO-R + M.
a=-2 <'%w "! * La-s
Sj + AC R+ = o
a-2 * a
Bi + AC

""WW":’J - e Y~

APPENDIX XII

>

S (=

YES
NO
-t .M
7 LoQ=sg _\ My
CLA = ZERO ~» M,
it CLA-L + M,
a=1 12
e FAM = L + M,
B Moba i TSX 1 EXP -+ M,
) OR
' FSB - L - . = STAZ R 2 My CLA = ZERO = M;,
1 a-? 12
- - R~ L FAM ~§ Y
: STO =R, Mis ! a-=1 B- 12
} R, - R, $STO -~ R - M.
Ri » La_‘ 1+ 1 1 q i3
R+ R 2 - B R * SB-a2
CLA-L - M, 141 !
a=1 i 8 8
P~ ™. -1 . -
OP-L_ M, 8 B
-R .
sTO ; - "13
LN ba-s
R +1 = R
3 1
el a=-2 * Q
5 -+ ac
)
-
Figure XlI-2 - Compiler General Flow Diagrara
-291.
—— I , P e hmm«wa—M - —— «m—-—"ﬁ-—-ﬁ"‘- oy s " PR TV -

N

APPENDIX XII

e s sy Wm

(2)

(3)

examine the next item. If the absolute value is detected while
examining an f{-triple, then the treec mentioned instructions are

formed before the 1-triple instructions,

Unary/Binary Minus

If a seven is detected in the decrement field of an item on the in-
put string (SLIST) during the initial scan, the subroutine MINUS
is entered. This subroutine will check the next item on the list
(SB‘I) to see if it is an operator. If the next item (5,8-1) is not an
operator, then the minus operation is binary and program control

goes to the OTHERS subroutine.

If the next item (SB°1) is an operator, then the minus is a unary
operation a2nd three instructions are formed: (1) CLA POOL,

which makes the contents of the AC register equal to zero once
this instruction is executed at object time; (2) FSB La-l' which
will subtract from zero (AC register) the contents of La-l; and
(3) STO Ri’ which will store the result of the unary operation in

an intermediate location.

Then @ and 3 are set to examine the next input item and compiier

control returns to START,.

Exponentiation

If an eleven is detected in the decrement field of an item on the

input string {SLIST) duving the initial scan, the POWERS subhrou-
tine is entered. This subroutine checks the next opsrator (S;j-l)
and if it 15 an absoluic viiue operator performs a compilation of

an absolute valus operation {irat,

After the absolute value compilation or 1 Sﬁ) i not an absolute
value operator, four indtructions are generated for EXP subrou-

tine vailing sequencves:

b, LPQ Sj e the value L0 be ratsed toa
-

power 1s piaved in the MQ register

.293.

]

APPENDIX XI1I

(4)

(5)

(6)

2. CLA La-l - the exponent to raise a value

to a pewer is placed in the AC register

3. TSX | EXP - transfer and set index 1 to the
current object program address and go to
subroutine EXP

4. STQ Ri - store the result of EXP in an in-

termediate location.

Then @ and 1 are set to examine the next item on the S list and

compiler control returns to START.

Parentheses

Once the operator "(" is detected (a four in the decrement field),
compiler control stays in the LFTPRN loop unti] all operations
within the parenthesis have been compiled. The loop stop code
is of course ")" (a three in the decrement field), and at *this time
compiler control goes to RTPRN and sets 2 and 3 to examine the
next input item. The final resultant within the parenthesis (RP)
is moved up one position on the L list by the RTPRN routine to
completely eliminate the parenthesis. For an illustration of this

case, see Page 316.
Terminators

Once the - operator is detected (a two in the decrement field),
compiler control stays in the TERM loop until all the operations
of the expression have been compiled. The loop stop code for
this routine ig 1 (a one in the decrement field). Once the condi-
tion *+ Rf 1 exists and there are 1o more expressions Lo be com-
piled, control voes to iizt and/or execute the program. For an

illustration of this case, see Page 316.
Others

The OTHERS subroutire is the most general subroutine in the

-294-

.~ S e R T T TPy
4 - e

L

[

APPENDIX X1I

cornpiler and effectively the input string could be defined in such
1 manner that OTHERS would be the only subroutine necessary
for the compiler. In the next section, the point is brought out as
to how expressions could be written that require extensive use of
the OTHERS routine. This subroutine first will compare the pre-
cedence of the current operator with the precedence of the pre-
vious operator; that is, PREC(Sj) < PREC(Bj_l). 1f the current
operator precedence is less than the previous operator prece-
dence, a set of object code instructions using the previous oper-
ator is formed. If precedence of the current operator is not less
than the precedence of the previous operator, it is added to the

intermediate (L) list and the next itern on the S list is exarmnined.

3. A SIMPLIFIED APPROACH TO COMPILING SUBSTITUTION EXPRESSIONS

a. Genezal

In writing substitution statements, many compilers try to reduce the
complexity of compilation by placing restrictions on the programmer.
Sometimes, these restrictions are a set of programming rules that
will discourage the use of parentheses or encourage the writing of
unary operations in a prescribed manner. By using the expression
on Page 288, the programmer could have conceivably written:

V = A%B + C*D (1)
W=ETIF+g.ABS. I 2)
X=JK-L/M 3)
Y=Q*R-P (@
Z = VW + X/Y (5)

Where £ is 2 location containing zero. It is noted that each simplified
expreseion contains an odd number of items. As & general rule, when
writing expressions in the above, simplified manner, the compilation

-29%.

o pr— Y M-—-.—-—-——W

e

APPENDIX XII

fn

time 'is thought t5 be rcduced considerably. Such is not the case when
using this algorithm for compilation. The reason for this is due to

the shorter loops (see Page 290) for
Unary minus - 44 cycles ,
T(POWERS) - 45 cycles ,
Normal absolute value - 37 cycles ,

whereas the general OTHERS loop requires 5C cycles. The OTHERS
routine as discussed in greater detail on Page 294 is used for a general

tuning equation derivation later in this section,

Comp:lation of Complex Expressions

A complete simulation of the compilation of the expression given on
Page 288 is illustrated in great detail beginning on Page 316. The
overall compilation time for the complex expression is found to be

1270 cycles or

= a e
Tiorals = 1270(2.18%) usec

= 2.3686 msec ,

The reason for such detail 1s to give the reader an insight into what is

involved ir order to do a comp:lation.

Derrivation of @ Genera! Timing Fquatien for Compiling Simplified Ex-
pressior .

From the simplified expro-sions on Page 29% and the flow diagram on
v R |

Paze 297, .t can be noted that there are {n - 1), 2 operators, (n - 1)/2
cperands, and (n - 1)72 triples, where n is the number of items in ' he
expression. (18 deen from the general timing equations beginning on
FPage 36 that the comapiler eegitres 1 cyveles to acknowledge and
transfer an operand from the mput siv.ong to the intermediate list go

the time (in cyveles) to {ransgfer oporands 1y

e S S, i ——

h)

oI ——— — = L ——— *-

The 700 cvole fime s 2018 usec per ovdle,

-20(_3.

AFPPENDIX XII

3 CYCLES

YES

|

SET uP
INSTRUCTION
GENERATION

MANUFACTURFE
FIRST
INSTRUCTION

l

MANUFACTURE
SECOND
INSTRUCTION

\

PUY REIULT
POINTER ON
L LIST

]

MANUFACTURE
THIRD
INSTRUCTION

|

RESTORE YO
AC REGISTER
SURRENT
QPERATOR

9 CYCLES

6 CYCLES

6 CYCLES

4 CvyCIES

CCYCta

16 CYCLES

ADD ITER TG

INTERMEDIATE |

LIST

6 CYCLES

2 rimes
2

START

Figure XII-3 - An Arithmetic Opera. r General Flow Diagram

-297-

N]

>

 APPENDIX XII

- n+tl
t(ope‘ra.nda) = 1l -z (6)

Using the data from the timing equations, it follows that there is gen-
erally

- n-1
Yeriple) = 30 T3 (7)
cycles per simplified expression.

The timing equations show that 15 cycles per operator is required or
. . 15(n - 1)
t(f:qzteratm'l) - ‘ (8)
Using the three equatione, the total time for each expression is
t(tota.l) = t(«)peramds) + t(triples) * 1:(c;v;:oerators)

38N - 27 cycles . (9)

1IN+ 1), 50(N- 1), IS(N- 1) _
= —z + 2 + ﬁz =

If N = 9 as in the simplified expressions 1, 2, 3, or 5 on Page 295,
then

t(total)“) = 38(9) - 27 = 315 cycles .

In simplified expression (4) on Page 293, N = 7 and
troal)®) « 38(7) - 27 = 239 cycles
so the overall time required to compile the simplified expressions is:
Titotal) = total)) * titoral)® * Yrota))®) * tirotan)® * tirotay)®)
2 315+ 315 ¢315+239+315 s 1479 cycles .

4. CHARTS, ASSEMBLY LISTING, AND TIMING EQUATIONS

The compiler flow charts, an assembly listing of a compiler. the gzneral
timing aquations, and a simulation of a compilation are presented on the
following pages.

-298-

- ———

a—- T TRTR. e G - . A v fadete o
A ! - —— g |
' . -

APPENDIX XI

BEGIN:

INPUT ONE
STATEMENT
AND STORE
INS LIST

SET THE
RESULTANT
POINTER

Y

SET Tne

OBJECT
PROGRAM
POINTER
i
SET ThE L

LIST POINTER
TO

t » a
‘__t.___

PUT A RIGHT
TERMINATOR
IN THE L-LIST
- - [

[}

!

PUT A LEFT
TERMINATOR
IN THE S§-LIST
- - 8

0

PUT THR '

CHARACTERN
COUNT INTD
la * ﬁ

CHam + B |

START:

J LIST:

PUT THE RIGHT
MOST OPEAATOR/
OPERAND IN AC REG [T
S8 + AC
B ‘ .
PUT THE o
PRECEDANCE UT 8 INDEX
(DECRIMENT) TO POINT TO
INTO X, NEXT ITEM
PRECHK) = X B-1 +» B
.], .
| VARCON:
ADD TO 'L
L]
I8 THIS vas LIO: ",
AN OPERAND ? w VARIABLE OR
(JUMP LIST) CONST
Gﬁ - I.,¢
a+y » a R

NO

(OPERATONR)

Figure X11-4 - Compiler Flow Chart

-299-

APPENDIX XII

T
LFTPRM
: RTPRN:
. (R,) CASE PUT
. v COMPARE :
ERROR AC TO 6 THE " TRIPLE"
stop)] RESULT POINTER
L IN AC
2
PREC 6. < PREC 8, :
j]=1 STORE iN L REDUCE L-LIST
6]. + TEMP LIST -2 -l INDEX X2 8Y ONE ——B
R, - - .
x2(8) ~ ToMP, i " ta-2 a-t »a 2
MPTR -+ X2 2
[
\
MANIUFACTURE
AN INSTRUCTION
CLA L -
a-1 Miz |6
MANUFACTURE
MA JOR
INSTRUCTION
oP - o + M.
a=-3 2]¢g
R. *» AC
1
MANUFAC TURE
$TO - R,
INSTRUCTION
. M‘s
(]
|
T
::a*mac —a B+ xa
o CM MPNTR RERNTR + 1
v
STORE + RPNTR
f X2 + MPTR 3
g

Figure X1I-4 ~ Compiler Flow Chart (Continued)

-390~

APPENDIX XII

OTHERS: {'OTHERS'

COMPARE

AC TO Sj ., FOR

PRECEDENCE

STORE AC
IN TEMP

PREC 5,‘ < PREC 8). -

5} + TEMP

X2 -+ TEMP X
MPTR - X2

MANUFACTURE
AN INSTRUCTION

CLA ~ L M,
a=\ 1

OR

MANUFACTURE R, = AC

THE MAJOR R -~ L

INSTRUCTION ot ! a=3
Pl w MANUFAC TURE
¢

-3 i2 $TO~R. - W,
i

3

SUBTRACT 3
FROM MPTR
THEN

X2 =+ MPTR

B -+ x2
"1 RPNTR + !

5

~ RPNTR

‘OTHC RS’

e o Mk d e

Figure XII-4 - Compiler Flow Chart (Continued)

-301.

- e T —— N

-l

Rt

APPENDIX XII

3TORE AC IN TEMP
r"}j + TEMP

x2(8) + TEMP X
MPTR - X2

EXECUTE >

6
MANUFACTURE
AN INSTRUCTION
CLA~L - M,
a~-1 i
OR
LDQ -4 - M
a=1 i
5
\
MANUFAC TURE R, = AcC SUBTRACT 3 B+ xa
THE MAJOR AC -+ L FROM MPTR RPNTR + 1
INSTRUCTION a=3 T + RPNTR
oP - L “m MANUFACTURE HEN
a-3 i2 STD R - M'a X2 + MPTR
H 1]
¢ s &5 + ac
)]
a-. v a

Figure XII-4 - Caompiler Flow Chart (Continued)

-302-

—— -t g

b

APPENDIX XII

SCOPEM

MINUS

5s
B-1
AN OPERAND

NO (-}
u

- =+ AC
u

(DECREMENT
OF AC)
+ X4

x2(f -
TEMFX"
MPTR » X2

!

PRODUCE
THE FIRST
INSTRUCTION
CLA -~ POOL

1

MANUFACTURE
SECOND
INSTRUCTICN

[4
B L.a_z

|

BINARY
MINUS
Sp + AC

BSOLUTE = 12

H*OTHERS"

REYA.N MESULT
POINTER BENTR

-
=

MANUFACTURE
THE THIT™
INSTRUCTION
$YO R‘

MPTR =3 +» MPTR

x2 » fi

APNTR = 1 + RPNTR

Jr8

I P IR R P T

Figure XII-4 - Compiler Flow Chart (Continued)

-393-

¢

APPENDIX XII

POWERS

ABFORM [copM SECOND
1y is sﬂ_ 2 INSTRUCTION FORM FIRST
ERROR) AN ABSOLUTE FAM=Sg_ > M, INSTRUCTION
CiA POO .
HALT OPERATOR X2 -+ TEWMPX - LMy
MPTR -+ X2
10 4
FORM THIRD MPTR = 3 + MPTR
INSTRUCTION B+ x2
SYO~R, + M RPNTR =+ §
i 13 B-2
‘ 6 10
<0
RPNTR = 1
-+ RPNTR
B-r + B
1 6
. ‘ FORM SECOND
FORM THE FiPS™ v TEMPX INSTRUCTION
INSTRUCTION |y MPTR - X2 |w{ LOa L
LDQ ~S LDG S M, w=1
B - i (EXPCNENT)
6 6
FORM THIRD APNTYR -+ 1 l Mi 4 - M’
INSTR ICTION , Y“ . .
TYSX EXPT CALL ANs(:nOR: ;" 29»47: t + RENTR
¢ 1 ON - .
R N Ee vt o B e
ogxp i) !

Figure XI;«4 - Compiler Flow Chart {Continued)

-304-

APPENDIX XII

ASSEMBLY LISTING OF COMPILER

[
op ADDRESS, TAG, DECREMENT COMMENTS
BEGIN CLA RST 2 SET 00010
STO RPNTR 2|, RISULT POINTER 00020
LAC ST, | 2 SET OBJECT 00030
SXA MPTR 2 PROGRAM POINTER 00040
SET 15X INPUT, 1 1 INPUT ONE STATEMENT 00050
AXC 1.1 1 1 (COMPLEMENT) —~ @ = X1 00060)
CLA RTERM z 00070
$TO LLIST 2912 1 Ly 00080
CLA LTERM z 00090
STO SLIST 2 b -8, 00300
LAC CHAR, 2 2 CHAR COUNT (COMPLEMENT) — 8 00110
START CLA SLIST, 2 2 441 06120
PDC 5. 4 1 }JLIST PREC{X) (COMPLEMENT) — X4 00130
TRA JLIST, 4 I 00140
JLIST TRA VARCON 1 VARIABLE OR CONSTANT 00150
TRA VARCON 1 1 = 1o (DECREMENT) 00160
TRA TERM 1 b = 2)), (DECREMENT) 00170
TRA VARCON 1 } = 3o (DECREMENT) 00180
TRA LFTPRN 1 (= 4,4 (DECREMENT) 00190
TRA OTHERS 1 = © 5), o (DECREMENT) 00200
TRA OTHERS 1 + = 6)) o (DECREMENT) cozlo
TRA MINUS 1 -« 7, (DECREMENT) 20220
TRA OTHERS 1 / = 8,4 (DECREMENT) 00236
TRA CTHERS 1 * ® 9, (DECREMENT) 00240
TRA POWERS 1 Te i)y suv 10, 00280
TRA SCOPEM+2 1 .ABS. = 12),, (DECREMENT) 00260
VARCON §TO LLIST, 1 2 Sy~ Ly 00270
™ NEXT, 1. -1 FRYY e+l —g 00280
NEXT TX: START, 2. 1 2 B-1=3 00290
LY TPRN CAS LLIST -2, 1 3 PREC(SJ) < HIEC(GE_X) 60300
TRA RTPRN 1 00310
HTR BEGIN 2 co¥29
STO TEMP 2 8, = TEMP 00330
CLA LLIST -2. 1 2 8'_l - AC 303540
PDC ¥ 4 1 n 0G3YS0
SXA TEMPX. 2 2 X2 —~ TEMPX 00160
LXA MPTR 2 2 MPTR — 12 00370
CLA DUMMYA. 4 2 003860
ADM LLIST -1,) 2 . MANUFACTURE AN 00120
STO 4.2] INSTRUCTION 00490
CLA DUMMYB. & 2 e
ADM LLIST -3, 1 Y MAIN INSTRUTTIOR coq20
$TO 1,2 2 004130
CLA BPNTR 2} . 09440
4 ~& - L
37O LUST -y o H toTe) 66450
AP) ¢ MAKE(AC) PLUS 00460
ADD DUMMYR, ¢ Y o0ere
$T0 2 2 : 0 - R M, coane
..
-308-

-

i

APPENDIX X1

RTPRN

OTHERS

TERM

ASSEMBLY LISTING OF COMPILER (Continued)

)
OP ADDAESS, TAG, DECRRMINT COMMENTS
™ *}, 2,3 2 My =M
SXA MPTR. 2 2 X2 — MPTR
LXA TEMFX, ¢ 2 - x2
CLA RPNTR 2
SUB ONE 2 0, Ry 1w (R4
STU RPNIR 2
CLA TEMP 2
TXX LFTPRN. 1.2 2 PR
CLA LULIST 1. 1) iRy} CASE
3710 LLIST -2, | i le
™t NEXT, 1.1 2 -1 —-a
CAS LLIST -2. 1 3
TRA VARCON 1 AC > Y GO ADD
TRA VARCON 1 AC = Y TO LIST
STO TEMP 2 8, -~ TEMP
CLA LLIST -2 1 2
PDC 4. 4 14° AC (DECREMENT COMPLEMENT)
SXA TEMPX, 2 2 XM —~ TEMPX
LXA MPTR, 2 2 MPTR = X2
CLA DUMMYA. 4 2
ADM LLIST -1. 1 26 MANUFACTURE AN
STO ¢ 2 2 INSTRUCTION
CLA DUMMYB. 4 2 MAIN
ADM LLIST -3, 1 2 1s INSTRUCTION
10 1.2 2
CLA RPNTR e, R, - Ly
STO LLIST -3 2
s 3 2 MAKE AC+
ADD DUMMYR. 4 2|, STO - R, M,
sTO 2.2 :
™ ®ef, 2, -3 H Xie) <= X2
3XA MPIR. 2 2
LKA TEMFX. 2 2
LA RPNTR :
SUB ONX 2 Hie A T A1
$TO RPNTR 3
CLA TEMP 2), - AC
™ OTHERS, 1.2 : a-1-a
CAS LLIST 2.1) TEIT PREC
TRA EXECUY i LIST AND/OR EXFCUTE »i,4
TR BEOIN 2 ERROR E + 8
ST TEMF ? b - iEMp
CLA LUST -2 1 :
PDC $ 4 \
SXA TEMPX 2 ey, X1H = TEMPX
LA MPTA 3 X MPTR ~ Xi
CLA DUMMYA ¢ 1
ADM LAY 2. g X MANUFACTURE
sT0 £ 3 2
~306-
i ¢ o - - .

X4

00490
00500
00810
00520
00530
00540
00550
00560
00870
00580
00590
00600
00610
00620
60630
00640
00660
00670
00680
00690
TA700
00714
06720
00730
00740
00780
C076d
00r20
00780
00790
Qo300
0c310
00820
Q0830
00840
00830
00460
o080
ooseo
00300
oo
o092
20W32
L4 30
ot
00840
0054
(413,
saege

APPENDIX XII

' ‘ ASSEMBLY LISTING OF COMPILER (Continued)

op ADDAESS, TAG, PECREMENT COMMIINTS
CLA DUMMYB, ¢ 2 009%0
ADM LLIST -1, | 2]e STORE FINAL RESULT IN 01000
sTO 1,2 2 SUBSCRIPTED VARIABLE 01010
CLA RPNIR 2|, n -t 01020
STO LLIST 3 2 e 01030
ssP 2 MAKE ACH 01040
ADD DUMMYR, 4 236 SAVE NEXT R, LOCATION 01080
sTO 2.2 2 FOR THE NEXT EXPAESSION 01080
TXL 4], 2, o3 2 XR-3=X2 01070
SXA MPIR, 2 2 X2 ~MPTR 01080
LXA TEMPX, 2 2 s=~xt 010%
CLA RPNTR PR TS 01100
SUB ONT 2 INCREASE R, POINTER 01110
S$TU RPNTR 2 01120
CLA TEMF 2 8 ~ac o1
TXI TERM. I, 2 F a-2~¢ 01160
MINUS CLA SLIST -1, 2 2 3y, ~AC o11s¢
TPL SCOPEM 2 (+) OPERAND If (+} OPERATOR 01160
CLA SLIST, 2 2]s 8, ~AC 81170
TAA OTHERS 3 01100
SCOPEM CLA UNMIN] PREC -, ~AC 01190
PRC 4. 4 1, DEC -, - X4 01200
SXA TEMPX. 2 2 XA ~ TEMPX 01210
LXA MPTR, 2 1) MPTIR ~ X2 01220
CiA CLEAR 2, CLA-POOL ~ M, LIE}
sT0 4.2 2 01240
CLA DUMMYD. 4 2 01250
ADM LLIST -1. i 2 le rEB L, ~M, 01260
8TO0). 2 2 01270
CLA RPNTR |, R, = AC 01280
STO LLIST -1, 1 : N~L oil%0
sSSP) F 01300
ADD DUMMYR. ¢ 2 fe STO - R~ M, o110
$TO - 3 H 81320
TXL eeq, g Fl AN
EXA MPTR 2] X2~ MPTR 01340
LEA TEMPX. 2 H 013%¢
CLA RPNTR PR T 3T
SLB ONE 2 INCARASE R, POINYER 8310
$TO apwR H G130
TXI START, 1. 1 1) g-1=p e
FOWERS CLA SuIST 2.2 1 8.y ~AC o140
. . CAS ABSYAL) TEST .aBA LITTT
WTR BEGIN H ZRROR MALT siaae
TAA ABFCRM | st
CLA DUMMYA. 4 Fy I‘ (Y
. ADM SLBsY i : tiese
IXA TEMMX. : 1 XM -~ TEMPR 100
LXA MPTR. @ Il lo MPTR « X2 sien
sT0 42 3 LOQ - 8y, = M, 100

361~

APPENDIX XII

ABFCRM

EXECUT

M. ST
R3T
RPNTR
15T
“ MPTR
RILRM
. DUMMYA

ASSEMBLY LISTING OF COMPILER (Continued)

oe
CLA
ADM
310
CLA
STC

Sl
TX1

SXa
LXA

~
“

510
suB
$T0
T
TSX
TRA
BSS
oCT
nss

A3

oCY
NQ®
NOP
NG
NOP
NO#
CiA

ADDRESS, TAG, DFCREMENT COMMENTS
DUMMYB. 4 2 0149¢
LLIST -1, 1 2 (6 CLA - L, = My, o1s0c
1.2 2 01510
TRANSX 2 . 13X - EXP ~M,, 01520
2,2 2 015830
RPNTR 2 01440
LLIST -, | 2t R -1, 01550
1 2 MAXE+ 01560
DUMMYR, ¢ 2 16 STQ - R, = M, 01570
3,2 2 01580
1,2, 4 2 91590
MPTR, 2 2 X2 ~ MPNTR 01600
TEM:I'X. 2 z A - X2 01610
RPNTR. R Y 01620
ONE 2 INCREASE R, POINTER 01630
RPNTR z 01640
STAPT, 2. & 2 -2 =8 01650
DUMMYB, +12 2 01660
SLIST -1, 2 2 FAM - 85, = M, 61670
TEMPX. 2 2 b0 01680
MPTR, 2 2 01690
1.2 2 01700
CLEAR ef, CLA - POOL ~ M, 01710
g 2 2 01720
DJUMMYR, +12 2 01730
RPNTR 246 STO - 2, ~ M, 01740
2.2 2 01756
*e], 0 -3 2 c1760
MPTR. 2 2 01779
1EM.X. 2 2710 21180
RPNTR 2z L7306
SIIST -2, 2 : R~ S, 01810
ONE ¢ 01310
RPNTR 2 01820
POWERS +4. 2. | 2 01830
DATAIN, 1| EXECUT - Xi 01440
MLIST 61486
Y JBJECT PROGRAM ALAGY
Y REIATIVE DISPLACEMEN cis0
ALSULT POINTER 01e80
MLIST SET FOR MPNTR 01399
OBJIECT FROGRAM POINT LR 019¢9
b OP ¢ 1 RINHT TERMINATOF 019190
PeNL, VARIADLE OR CONSTANT » LI
M00L. - CITTH
WIOL. - ETTTY
on0L, } o1%ie
PCOL ¢ LIRS
POaNL . LTLITY
-308-

e

APPENDIX XT'

ASSEMBLY LISTING OF COMPILER {Continued)

8
opP ADDRESS, TAG, DECREMENT COMMENTS .
CLA POOL + POOL+ L, , 01917
LA POOL - 01918
CLA POOL / 21919
LDQ POOL . 01920
CLA PoOL - 01930 3
LDQ POOL 1 01940
CLA POCL . ABS. 01950
DUMMYB NOF POOL VARIABLE/CONSTANT 01960
1IOP POOL 4 01970
NCP POCL - 01980
NOP POOL) 01990
NOP POOL { 02000
STO POOL = 02010
FAD POOL + POOL + Lﬂ" 02020
FSB POOL - 02030
FPP POOL / 02040
FMP POOL * 0zosc
FSB POQL . 02060
LDA POOL 1 02670
FAM POOL . ARS, 02080
DUMMYR NOP POOL VARIABLE/CONSTANT 02030
NOP POOL 4 02100
NOP POOL [0z110
NOP POOL } 02i20
NOP POOL { 02130
NOP POO! + PCOL + 100(R) 02146
STO POOL . 02150
STO POOL 02160
STQ POOL / 02170
5TQ POOL . 62180
(3 (e} POOL -u 02149¢
STQ POOL 1 02200
STO POOL ABS. 02210
LL1ST BsS 198 INTERMEDIATE $TORAGE 02220
LTERM » OP. 4.2 LLFT TERMINATOR OPERATOR 0223C
SLIST BSS s INPUT STHING 02740
CHAR BSS CHARACTER COUNT 02259
TEMP nss TEMPORARY STORAGE 260
TEMPY B3S INDEX STORAGE paem
ONE oeT i 3.8
UNMIN S OF F U UNARY OFPERATOR 022%
ClLEAR LA POOL D362
' POOL, R0 ZERO 02140
BSy 200 CONSTANT/VARIABLE /RESULTS LIS FY
ARSVAL ABS OP ¢ 12 02340 A
TRANSX T3X EXp ¢ TRANSF CR TO SUBROUTINE 021%0
INPUT AFM INPUT ONE STATY MENT ROU i NE 02342
DATAIM KEM READ DATA ROU TINF AN
TRA b GO TO L+ | {MAIN PROGRAM; 01380

-309.-

M 4

APPENDIX X711

GENERAL TIMING EQUATIONS

RN

Initializatin

Time to set the triple resultant pointer and object program pointer:

BEGINOOOIO - BEGIN0004O = 8 cycles

Time to set the program to cornpile one expression:
SETOOOSO - SL‘TOOIIO = 12 cycles
Tirme to acknowledge one item:

START - JLIST

00120 00150-00260 = O Cycles

Variabie or Constant

Time to transfer a variable or constant from the SLIST to the LLIST:

'\/"ARCONOO270 - NEXTOOZQO = b cvcles

Time to discover PREC("(") < PREC(BJ_I)

Left Parenthesis

LFTPRNOONC = 3 cycles

Time to manufacture first instruction:

a LFTPRNOO330 - LFTPRNOOQOO = 15 cycles
i

Time to manufacture second instruction:

LFTPRNOUMG - LFTPRNOO430 = 6 cycles

-310-

KL
R - gy e s e
&

Wr————

-) .- o .—'M””‘ww

APPENDIX XII

Time to STORE resultant pointer in LLIST -3

I‘FTPRN0044Q - LFTPRN00450 = 4 cycles
Time to manufacture third instruction:
LFTF’RN00460 - LFTPRN00480 = 6 cycles

Time to increase Ri pointer by one, object program counter by three, and

decrernent @ by twor

LFTPRN I‘FTPRNOOS(;O = 16 cycles

00490 ~

Time to form a triple set of instructions:

ELFTPRNOONO - LFTPRNOOS(;O = 50 cycles

Time to put Ri at La‘l back to La-Z for (Ri) case

RTPRN00570 - RTPRN00590 = 11 cycles

Others

Time to discover PREC(aj) < PREC(Sj_l):

OTHERSOO6OO = 3 cycles if yes

4 cycles if no
Time to manufacture the {irst instruction:

OTHERSOO63° - OTHERSOOHO = 15 cycles

Time to n:anufacture the second instruction:

OTHERS - OTHERSOO“O = 6 cycles

00720
Time to store resultant pointer in LLIST -3:

OTHERSOO.,SO - OTHERSOOMO = 4 cycles

"3“-

APPENDIX XII

Time to manufacture the third instruction:

OTHERS - OTHERS, o = 6 cycles

00770 90

Time to in:irease R, pointer by one, object program pointer by three, and

decrement @ by twe

OTHERS00800 - OTHER500870 = 16 cycles
Time to form a triple set of instructions
ZOTHERS 540 - OTHERS) g, = 50 cycles

Terminator

Time to test PREC(+) < PREC(SJ._I):
TERMOOSSO = 3 cycles

Time to manufacture the first instruction:

TERMOOQIO - TERMOO‘?SO = 15 cycles

Time to manufacture the second instruction:

TERM()0990 - TERMOlOlO = 6 cycles
Time to put the Rx poirnter into LLIST -3:
TLRMomzo - TERMOIO}O = 4 cycles

‘ime to manufacture the third instruction:

TERMOlO‘to - TERM01060 = 6 cycles
Time to incriase Ri pointer by one, object program pointer by three, and
decrement g by two:

TERM - TERM = |6 cycles

01070 01140

st2.

APPENDIX XII

=

Time to form a triple set of instructions:.

ITERM - TERM = 50 cycles

00880 01140

Minus

Time to discover binary minus

MINUS - MINUSo“SO = 7 cycles

01150
Time to form binary minus triple set of instructions:
MINUS

- OTHERS = 50+ 7 = 57 cycles

01150 00870

Time to discover unary minus

MINUS01150 - MINUS01160 = 4 cycles

Time to manufacture the first instruction:

!SCOPEZMOU90 - SCOPEM0124O = 11 cycles
Time to manufactur= the second instruction:

SCOPEMOI;'50 - SCOPEMOIZ?O = 6 cycles
Time to put the resultant point into LLIST -1:

SCOF‘E}\A01280 - SC(.)PEM01290 = 4 cycles

Time to manufacture the third instruction:

SCOPEM

01300 ~ SCOI-"EIMOH‘?.0 = 6 cycles

Time to increase Ri pointer by one, object program counter by three,

decriment 3 by one:

SCOPEM - SCOPEMOISQO = 13 cycles

01330

Time to form a unary minus triple set of instructions:

-313.-

and

APPENDIX XII

- SCOPEM = 44 cycles

I MINUS

01150 01390

Powers

Time to test SB-Z for absolute value:

- POWERS = 5 cycles

POWERS

01400 01410

Time to manufacture the first instruction:

- POWERS = 10 cycles

POWERS

1440 01480

Time to manufacture the second instruction:

POWERS - pOWERSOISIO =z 6 cycles

01490
Time to manufacture the third instruction:

POWERS - POWER51530 = 4 cycles

1520

Time to put the Ri pointer on LLIST -1:

POWERS - POWERS = 6 cycles

01560 0158

Time to increase the Ri pointer by one, the program pointer by four, and

decrease 3 by two:

- POWERS

POWERS = 14 cycles

01590 01650

Time to form: a calling sequence of four instructions:

IPOWERS - POWERS, . = 45 cycles

01400

! .ABS. V 1 V Condition

Time i SB_2 =z . ABS.:

PO\VERSO“OO - POWERSN“O z 6 cycles

-3l4.

APPENDIX XII

Time to form the first instruction:

ABFORM01650 - ABFORMOl.mo = 10 cycles

Time to form the second instruction:

ABFORMOH]O - ABFORMOI?ZO = 4 cycles

Time to form the third instruction:

ABFORM - ABFORM = & cycles

01730 01750

Time to put Ri on SLIST -2 and increase the object program counter by
three:

ABFORM - ABFORMOIBOO = 10 cycles

01760

Time to increase Ri pointer by one and decrease 3 by one:
ABI“ORM01810 - ABFORM0183O = 6 cycles

Time to form a triple sei of instructions for this case of absolute value:

}:PQWE:RSOl 400 ~ ABFORM, 2., = 42 cycles

Normal Absolute Value

ISCOF"EMOlzm - SCOPEM 37 cycles

01390

-315-

; . - { ..j -

APPENDIX XU

SIMULATION OF A COMPILATION

Status of SList

Accumulative Accumulative
time (o time to
reference reference

SB sitemn (cycles) SI3 item (cycles)
F 1216) 597
Z 1205 + 532
- 1090 (465
{ 973 J 420
A 962 1 411
* 947 K 400
B 936 - 328
+ 871 L 317
Cc 860 / 302
* 845 M 291
D 834) 280
) 823 / 265
i 808 { 198
(741 - 149
F 69¢ P 138
t 687 + 73
* F hT6 Q 62
! + tobl W 473
. ABS, 619 R In
- I 608) 2%

-3ih.

APPENDIX XII

Status of LList at Various Intervals

Accumulative
time (cycles)

a L, sB—oL.a a L, S‘B--La a L, sﬁ—'La
0 4 20 0 - 20 0 4 20
1) 31 1) 31 1) 31
2 R 42 2 R, 101 2 R, 101
3 * 57 3 @ 3 + 133
4 Q 68 4 P 144
5 ® 5 0]
PREC(+) - PREC(*) PREC(+) > PREC("M)") S is an operator
Q*R—R, B

M R,
a L, SB-—La a Ly Sﬁ—°La o L, SB'-"Lﬁ
0 4 20 0 <4 20 0 <4 20
1) 31 1) 31 1 R, 260
2 R, 101 2 R, 226 2 / 275
3 + 133 3 @ 3) 286
4 R, 174 4 M 297
5 O 5 / 312

6 L 323

7 ©
PREC(")") < PREC("+") Lya—L,.2 PREC(-) # -u < PREC(/)
R, * R—R, L/M--R‘

-317.

AP S e
-

APPENDIX XI

Status of LList at Various Intervals (Contirued)

a La Sﬁ—-La a L, SB—°La
0 4 20 0 - 20
| R, 260 1 R, 260
2 / 27% 2 / 275
3) 286 3) 286
4 R, 363 4 R, 363
5 - 395 5 - 395
6 K 406 6 R 440
7 @ 7 @
SB-Z # . ABS. PREC(")") < PREC(-}
.c‘ JTK-—-.RS "'RS - R4—‘R6
a La S,B“La' a La Sﬁ—oLa
0 4 20 0 - 20
1 R, 260 1 R, 560
2 / 275 2 + 592
3 R, 527 3) 603
& \
5 . ABS,
y

PREC({+) < PREC(/) .ABS. IRy
_‘.R6/R3*‘RZ

-3i8-

a La

0 |

1 Ry

2 /

3)

4 R,

5 ©
(R,)CASE
Lge1T Ll

a L,

0 -

1 R,

2 +

3)

4 Ry

5 +

6 F

7 .t

Sg-2 7 . ABS,
SEVF—R,

260
275
286
493

560
592
603
637
671
682

APPENDIX XII

Status of LList at Various Intervals (Continued)

a L, Sg—1,q a L, 55=>L, a L, Sg—L,
0 4 20] - 20 0 4 20
1 R, 560 1 R, 560 1 R, 560
2 + 592 2 + 592 2 + 592
3) 603 3) 603 3 R, 803
4 Rg 637 4 R, 769 4 * 518
5 + 671 5 (5) 829
6 Rq 716 6 D 840
7 U 7 * 855
8 C 866
9 t
PRREC("A*') < éﬁnncm (R;)CASE PREC(+) < PREC(¥)
". + —-—— . — .l‘ C*D*R
9 7 ®gT M0 S Lge1—Lg.2 11
S
u L, g Lg a L, Sg Lg a L, Sg g
0 4 20 0 4 20 0 4 20
1 R. 560 1 R, 560 1 R- 560
2 . 592 2 + 592 2 + 592
k]
2 Ryo 802 3 R0 803 3 Ryq 802
4 . 818 4 * 818 4 * 8lo
5) 829 Z) 829]) 829
7 . 931 ? . 931 7 ©
& B 942 8 R, 100
9 . 957 9)
10 A 968
1 {
PREC("{") < PREC({®} PREC("{") < PREC(+) (R,))CASE
L A*B=Ry, Riz * R =Ry, Lg.1=Lg-2 .

-319-

W e, R PRI W P 3

APPENDIX XII

Status of LList at Vi ricus Intervals (Continu_ed)

y —— e O TR RO SR - ¥ et a 7 : o
e ok R il N SRR A AT) 1D 5| e - 2

a L s et ¥ wam— —
2 g La a La SI3 L'a o "‘a SB La
0 1 z0 0 4 20 0 4 20
1 R, 560 1 R, 560 1 Rys 1168
2 + 592 2 + 592 2 = 1200
3 Rio 803 3 Ry, 1118 3 Z 1211
4 % 818 4) 4 B
5 Ry, 1085
6 &
galicm < PREC(%) PREC(=) <« PREC(+} "TERM" CASE
i 13*R1 0™ R4 Rig* Ry—Ry, Z = Rig—R(
a La Sﬁ-°La
0 4 1270
R, 1244
2 ®
| Object Program
MNEMONIC TAG ADDRESS
MLIST L.DQ POOL + 14 91 C(Q)—~MQ
FMP POOL + 15§ 97 C(Q)*C(R)—~MQ
STQ POOL + 100 107 MQ--R,
CLA POOL 164 ZERO—AC
« FSB POOL + 13 170 C(AC) - C(Py—AC
STO POOL. + 10i 180 AC-'Rz
CLA POOL + 101 216 C(Rz)'-AC
FAD POOL ¢+ 100 222 C(Rzl . C(R!)-—--AC
STO POOL « 102 232 C(AC)~- 8.3
¢ CLA POOL + 11 353 C(L)=AC
3 -320-
L‘mwm e —— s g - -——-o—rw 1 A ';" -

< gt g O NP P 0

APPENDIX XII

e B

-

FDP
STQ
1.DQ
CLA
TSX
STQ
CLA
FSB
STO
CLA
FDP
STQ
CLA
FAM
STO
LDQ
CLA
TSX
STQ
CLA
FAD
§TO
1.DQ
FMP
STQ
LDG
FMF
STQ
CLA

Object Program (Continued)

POOL + 12
POOL + 103
POOL + 9

POOL + 10

1 EXF

POOL + 104
POOL + 104
POOL + 102
POOL + 105
FOOL + 105
POOL + 102
POOL + 106
POOL
POOL + 8
POOL + 107
FOOL + 6
POOL + 7

1 EXP

POOL + 108

POOQOL + 108
POOL + 107
POOL + 109
PQOL + 4
POOL ¢+ 5
POCL ~ 110
POOL « 2
POOL - 1}
POOL - 111
POOL - 111

-321-

359
369
426
432
436
446
483
489
499
550
556
566
€27
633
643
702
708
712
722

759
765
775
889
895
905
391
297
1007
1011

C(L)/C(M)~~MQ

C(Q—R,

C(H—MQ

C(K)—AC

GO TO SUBROUTINE "EXP"
RETURN HERE C(X1) + 1
C(Rg)—AC

C(Rg) - C(Ry)—ACL
C(AC)—R,

C(R;)—~AC
C(R;)/C(R5)—~MQ
C(MQ)—R,

ZERO—AC

|c(n]—~Ac

AC—Rg

C(E)—MQ

C(F)—AC

GO TO SUBROUTINE "EXP"

RETURN C(MQ)—"R9

C(Rg)—~AC
C(Rg) + C(Rg)-—=AC
CIAC)—=R,,
C(C)—MQ
C(C)*C(D) —=MQ
MQ—=R,
C(A)—~MQ
ClAV = C{B)=~MQ
MQ-=R,,
R

e

2~ AC

G

P s et A S A

APPENDIX XII

Object Program QContinuedl

MLIST FAD POOL + 110 1047 C(R,;) + C(R,,)=AC
(comt) oro POOL + 112 1057 AC=R,,
' LDQ POOL + 112 1108 G(R,,)~MQ
i FMP POOL + 103 1114 C(R,,)*GIR, j)—MQ
: STQ POOL + 113 1124 MQ—R,,
{ CLA POOL + 113 1158 C(R,)~ AC
- FAD POOL 4 106 1164 C(R,,) + C(R.)—AC
STO POOL + 114 1174 AC—R,,
cLA POOL + 114 1234 R,)—AC
: STO POOL +1 1240 C(AC)—Z
NOP POOL + 115 1250 R+ 1
POOL 00 00 00 00 00 €0 ZERO

00 00 00 00 00 90 Reserved for Z
00 00 00 00 00 oo Reserved for A
00 00 00 00 0o 00 Reserved for B
00 00 00 00 00 00 Reserved for C
00 00 00 00 00 00 Reserved for D
00 00 00 00 00 00 Reserved for &
00 00 00 00 00 00 Reserved for F
00 00 00 00 00 00 Reserved for |
00 00 00 00 00 00 Reserved for J
00 00 00 00 00 00 Reserved for K
00 00 00 00 00 vo Reserved for L
00 00 0o 00 co 00 Reserved for M
i 00 00 00 00 00 00 Reserved for P
? 00 00 00 00 00 00 Reserved for Q
00 00 09 o¢ 00 00 Reserved for R

-322.

APPENDIX XII

POOL + 100

5. CONCLUSIONS

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
o¢

00
00
00
00
00
00
00

00 -

00
¢o
00
00
00
00
00

00
00
00
20
00
00
0o
00
00
00
00
00

00

00
00

0o
00
00
00
00
00
00
00
00
00
00
00
00
00
00

Q*R
gd-P

R, + R,
L/M
JTK

R; - R,
Ry /Ry
.ABS. I
EtF

Ry + Ry
)
A%B
Riz*+ Ry
Ri3*R)po
Ri4tRy

Result of

When comparing the compilation time of the simplified expressions to that ot

its equivalent complex expression, it is readily seen that the writing of com-

plex expressions is to a marked advantage.

For most compilers, however,

this is not the case and the programmer can usually compile simplified ex-

pressions with greater speed. The compiler size could be reduced consider-
ably if only the zimplified type of expressions is to be compiled but, of course,
this would mean & sacrifice of compilation time.

If the generated odject pro-
gram (Appendix D) is examined, it is readily seen that this is not an optimum

object program. To generate an optimum object code, additional tests could

be included in the compiler but these changes would increase compilation time.

Many of today's compilers are designed with the desire of generating optimum
object program in mind.

-32)3-

In order to accomplish this, the subatitution expres-
sions are scanned severa! times looking for:

]
Iy

o st il ,m;w»wwMW

APPENDIX X1

1. Repetitive triples, i.e.:

a+b,

b 4

y = C+ D¥(a + b) ,
where a + b is the repetitive triple
2.. Commutative triples, i.e.:
x = a+b,

y = C+ Dx(b +a),

where a+b = b + a, etc.

L

Redundant object code, i.e.:
STO R, AC—R,
i i

CLA Ri Ri—’AC

In the present algorithm, none of the above considerations was employed. For
large programs and programs that are developed with long-range use in mind,
the above features should be considered in the writing of a compiler. Such a
compiler would be useful in a production-type computer envircnment. Such

features sometimes would result in long compila*ion times to accomplish short

object program execution times. If the cbject program is to be used only once

or twice, it sometimes becomes absurd to use as much as twice the object pro-

gram execution time in order to accomplish a compilaticn.
The accumulative compilation tirue for compiling the expression
Z = (AXB + C2D)S(ETF + .ABS. 1) » (JIK - L/M)/{-P + Q*R)

was found to be 2.37 msec and for an equivalent set of simplified expressicns
(using a more gereral subroutine). 3.27 m3ec. The aigorithm consists of

184, IBM 7090 instructions and 654 locations for constants and working sta:-
age.

a1y i o oo o A

APPENDIX XIII - MACHINE II PROGRAMMING

INTRODUCTION

This is the programming report for the compilation problem programmed
for Machine 1l as a portion of the work performed under Contract AF30-
(602)-3550. The compilation problem was the programming of a portion
of the Michigan Algorithm Decoder (M..is). The section of MAD chosen
for demonstration was the compilation of substitution statements. Sub-
stitution statements are composed of variables and operators whose values

are substituted or made equal to some variable.

When grouped, the elements of the statement fall into sets of triples, two
operands and an operator, that can be used to yenerate an object program
for machine execution. The keys to statement decomposition and object

generation are cperator precedence, the order of execution when a state-

ment is composed of various operators, and a statement scanner.

Item 2 contains a discussion of the programs. Item 3 containe resaults of
the programming, a comparison with the IBM 7090 program, and the com-
piler flow charts and programs. Item 4 contains a discussion of the ob-

ject program generated and the object program.

DISCUSSION OF THE FROGRAM
a., Stateme.t
The statement sele.ted for demonstration is
Z=z(A+B+C +Dj+(ETYF+ABS]) ¢+
(J ' K- L/M/(NEGP+Q ¢ R)

-325-

i
3
4

TR wtian e 5 e

APPENDIX XIII

S SO S !

Each variable is represented as a =ingle alphabetic character, al-
though 2 maximurn of six are recognized in the MAD translator. It
ic assumed that the decoding process has been completed and a table
(the L list) generated with single-word entries corresponding to each
variable and each operiator in the statement., The entries in the L
list are in the same order as the elements in the substitution state-
meant. The L list is scanned from left to right and, depending on the
tests that are s2tisfied, an output list (the P list) and a temporary
list (S list, or stack) are generated.

Operands are transferred immiediately irom the L list tc the P list.
Cperators are transferred to the iop of the S list if their precedence
is equal to or greater than the current operator on the top of this list.
Termination and grouping symbols require special handling. Left
parentheses are unconditiorally put on the S list. Right parentheses
cause the removal of all elements from the S list and transfer to the
P list with the parentheses, both right and left, then removed. The
right termination symbol causes the transfer of all remaining oper-
ators in the S list to the P list.

The substitution statement is assumed to have less than 256 elements

80 that it can be considered as occupying at most one block of memory.

The object program also is assumed to require at most one block of
memory. These restrictions are not necessarily fixed but could be

removed with minor programming changes.

When an operator is added to the P list, the preceding two opsrands
with the operator are sent to a yenerator program to produce a seg-
ment of the object program. The resultant, Ri’ is then entared in
the P list and the scanning continued.

Table X1ll-! shows the L list, Table XIlI-2 showa the P list status
and the compiled triples.

N cocanudire ol

" AN] A

APPENDIX XIII

TABLE X1lI-1 - L LIST

00, LA TLL, | BTt A A NS AV

‘Elem.nt Element Element -
{no.) Element {no.) Element {no.) Flement
! Z 14 E 2?7 L
2 = 15 t 28 /
3 (16 F 29 M
4 A 17 ¥ 30)
5 . 18 ABS 3 Y
6 B 19 1 32 {
? + 20 33 NEG
8 C 21 + 34 P
9 . 22 3s +
10 D 23 ' 36 Q
11 } 24 37 .
12 . 25 K i8 R
13 (25 - 39)

TABLE XIllI-2 - P LIST STATUS AND

COMPILED TRIPLES

P list status Triples compiled

zA B - Ry
zR C D R,
Z Ry Ry ¢ L
zZ R E F Rys
2 R, Ry ! ABS Rys
Z Ry Ry Ryy Rie
z Ry Ry o R,
PR ox Rie
Z R, Ry LM/ Rag
Z Ry M R e
T R, R, P NEG "
Eohy Ry By 0 nclomy
R, Ry Ry Ry Ris
2 Ry Ry By S el
z Ry Ry t
z o,

&

AB
C+D
Rs + R9
EtF
ABS I
Ry *Rig
Ry * Ry
11K
/M
Raa" R
NEG P

Q +«R
'\}_‘ Ry,
LITSLITY
Rt Ry

-327.

h‘a 3

s

RIS

ir el S e

:
$
¢
H

i
it SR R

7 SUIN

APPENDIX X1l

e

&«» W PR g O ~ O e
il

A flow chart depicting the proceas of starting a generator program

is shown in Figure XIII-1 (the illustrations begin on Page 335). The

* routines have f:und that an operator is to be transfsrred to the P
list. When the transfer has been accomplished, an instruction starts
the SP block; this in turr starts either SPU or SPB. When the required
data have been transferred to the generator programs, Gl, G2, G, or
G4 BRING instructions are executed in SP and G*, I*, or K¥, enabling
starting of subsequent blocks of the program. The BRING instructiors
request a result that is generated in a block started by the block in
which the BRING resides. The BRING is executed when the result is
generated, Hence, a block is not completely executed until the

BRING is executed. If subsequent STARTSs are dependent on a BRING,
there will be a delay in them until execution of the BRING.

Assumptions

A variable in the L list or P list has the format shown below.

INDEX Vv - ADDRESS

The address of the whole word as it is contained in a block is i, Index
is a pointer to a list location containing the symbol:: name of the vari-
able. V is a bit, equal to a one, indicating that th2 ‘vord corresponds
to a variable. Address is the memory address of the variable that is

assumed as iy 'ed afrer L list generation,

An operator in the L, S, or P list has the fcrmat shown below,

e ——— Y vo——

i PRE., - ook
" b v e £ 5 wn

The address of the whole word as 1t appears in o block {8 i. The
precedence of the oporator (s contaiwned in the PREC field. Vis a
bit equal to 0, :ndicating thai the clement is an »perator. Code is

the operatian code,

-38.

APPENDIX XIII

The operitions considered were floating point arithmetic, absolute
value, exponentiation, and eaquality,

Program Technigues

The program is a left-to-right statemz.c scanner that allows gen-
eration of tripies a8 soon as an operation can be transf. “red from
the S list to the P list. In the flow diagram of Figure XIiI-2, the
ABLE and CHARLIE loop transfers operards from the L list to the
P list. If an element is an operator and its precedernce is equal to
or greater than the top element of the S list, the S list is pushed
down and the element i3 put on top of the S list. If the operator has
less precedence than the top element of the S list, then the top ele-
mert of the S list is put cn the P list. When an operator is placed
on the P list, a generator program is started that produces the cor-
responding portion of the object program using this operator and the
two preceding operands on the P liat. A resultant address is calcu-

latec and entered in the P list as a variable,

The detection of a left parenthesis r:sulis in the transferral of the
element to the top of the stack. A right parenthesis causes all op-
erators up to the first left parenthesie on the S list to be transierred,
in order, to the P list. Again, each operator transferred to the P
list W28 a2 corresponding generator program started that produces a
portion of the object program cerresponding to the operator trang-
ferred. The parentheses are thei droppe. from he S ligt and are
not transfe: red to the P list.

When a right termination is detected, all remaianing operators o the
S lint are transferred to the P list in order. For cach operator
transtlerred, a corresponding generatar program is staried to pro-
duce s partion of the object program.

A tripie 19 detected cach time an operatar i+ ‘ransiorred (rom the

$ Liet to the ¥ List. The operancs associated with the operator and

A P s i A

g =

APPENDIX XIII _

comprising the triple are immediately ahead of the operator on the

P list, The resultant address is calculated as the first word address
of the generated object progr-r.. segment. This resultan: address is
then placed in the P list as a ~ariable. It will in turn be considered

as an element of some triple.

The generator programs produce & segment of the object program.
The resultant is always left in the first wora of the object program

i
4

x
:
g

7

segment or, in the case of a double precision operation, in the first
two words of the segment. The initial address of a segment is cal-
culated easily by considering the maximurn size of all possible object
program segments. In this example, the size is indicated in the pro-
gram as @ . The index of the operator in the L list is used to de-
termine i @ , which is then added to the object program base address
and results in OBI + I @ , the initial address of the object program

segment and the lozation of the resultant of the triple.

Parallelism exists both within any block of the program and between
blocks of the program and the generator programs. The algorithm
is sequential in nature; attempts to scan the substitution staterm-=nt
in parallei resulis in invalid intermediate forms of the statement,
Attempts to correct this uncovered a processor control problern.
Figure XIII-1 depicts the sequence «f 3 program started when an
operator is detected. The solid lines indicate the sequence executed
for a block start. The dashed lines indicate the path followed while
the initiating block is waiting fo: an angwer from the initiated block.
The initiated block in turn tests the operator and starts other blocks.

The G* G™ loop in Figure XIII-1 starts the SP block which tests the
- operatc+ t., determine if it is & unary or uinary operator. If it is
Y unary, the SPU block is started and a return to the G is accomplished
by the BRING instruction ir G. If the operator is binary, the SPB
blork in started. The SPB biock tests the operator and if it is not
an exponentiation, the GENC | block is started,; if it is exponentiation,

-330.

Ve

APPENDIX XIII

B o SR Lt e Sl

-l

the GENO 3 is started. The SPB block is tested also by the BRING
instruction in G and when it is satisfied the GJ loop is reinitiated,

Some characteristics of Machine 1I make it a desirable machine. The
storage of results in the word occupied by the generating instruction
simplifies programming in that no explicit store irnstruction is re-
quired for MPC storage. However, a store instruction is required
for a memory store operation. The variety of conditional starts is
necessary to enable branching from a block. To execute a two-way
branch from a block, two conditionals are required in that block, both
testing the .ame word. In some respects, this is undesirable in that
extra instruciions are required cver what would be required in a se-
‘quential machine. However, no extra time is required because the
two tests are performed in parallel as soon as the test word is avail-
able.

The ability to acquire data from neighboring blocks is necessary for
program continuity. Data from a previous vlock can be addressed
relative to the previous starting instruction or by absolute block ad-
dress. Data from a subsequent block can be retrieved by absolute
address within the sta-ted block. A BRING and an M WAIT instruc-
tion for a block to be started should not be used in the same block.
The M WAIT instruction waits until all instructions have been exe-
cuted before starting 3 new block while the BRING attempts to bring
back a piece of data generated by that block. However, a conditicnal
or an unconditional start and a BRING instruction are compatible.

Data in memory can be found with the READ MEMORY, READ
MEMORY INDIRECT, and THRESHOLD instructions. The READ
MEMORY is an absolute address instruction, the READ INDIRECT
permits an indexed access, and the THRESHOLD instruction permits
a next-higher-th.n threshold nearch,

A disadvantags is the quantity of data that must be passed irom cone
block to another. In the problem. as many ae 8 to 1C worde passed

-331-

APPENDIX X111

through 2 series of hlocks. Timewise, this was not detrimental since

all the data were passed in parallel, However, each transfer re-
quired an instruction. In some cases, where a word was being used
as zn index, the shift instruction is placed elsewhere in the program
and the index augmented with the result left in its proper relative
location reaily for transferral to the next block. Considerable time
is spent ir laying out data transfers, especially when attempting te

impiement a program loop.

The instruction-erase option aillows the programmer to maintain a
minimum of MPC storage. As results are used, they can be erased,
allowing MPC s*torage of other data. In the problem, however, it
was found that because of the zmount cof Lrancking and looping the
task of erasing data or maintaining data ard letting subsequent bjocks
erase it where there was aiternate subsequent blocks, became diffi-
cult and time consuming. One way to surmcunt the problem would
be to alter the erase instructions so that the instruction would not be
executed until all data had be=n transferred to the new block. Then
the previous blcck cou'd be wiped out combpletely. The instruction
would be a combination of ERASE and a modified M WAIT where the
wait wou'ld be derendeat o tha transferral of all data requested by

the new block of nrogram

Programming of Machine II has been relatively easy in some re-
spects and difficult in others. It is easy to program in a straight-
forwara rarner with ne attesap. at fires.e, However, the lack of
indexing seriouslv hampers any aitempt to reduce tne size of a pro-

grata by usiag loops. The ability ¢ converse between blocks usiag

S the SHIF { and BRING instrusiionge partdy roso’ -es he difficulty, but
I
{ the neceasity car time consaming #1a4 tedious program layout of data
te e transferred bewween biocks still remains whoen operation is

restructed to the MPC [t s possible that even this difficulty can

He removed by maintaining these dava o memory, but here again

R S i SRR ¢ Lt e
T e o ¥

- BT S BN PN : B = o G e e A e A e

APPENDIX XIII

the tradeoff sacrifices the speed of obtaitning a result from the MPC
for obtaining a result from the memory. The former is obtained
while executing an instruction requesting the result while the latter
requires a READ MEMORY instruction and then an operating instruc-

tion to acquire the same result,

3. RESULTS AND COMPARISON

The results looked for in the programming portion of the study are time
to execute the problem, processors used during execution, ease or dif-
ficulty in programming, compariscn with the results of programming a
similar problem on a sequential machine, and an extrapolation of times

for the two machines and subsequent comparison.

The algorithm finilly used in the problem was more sequential in nature
than others exa:nined but did not display the control problems inherent in
some of the others when programmed. The result was a very low average
load on the processcrs. The average loading was 1. 17 processors per
machine cycle for the total problem execution time. Peak loading is es-
timated to be no riore than 10 processors iu any machine cycle. Ancther
algorithm or a slightly lcnger or shorter program block could change the

peak, either increasing it or leveling it.

The time required to execute the algorithm for the translation of the sub-
stitution statement and generation of the corresponding cobject program
was 53, 585 msec. The speed ratio of the sequential machine to Machine
Il is N to 27, where N is the number of statements to be compiled. If it
is assumed that there is more than ore statement to Le translated, then
the sequential machine will translate faster until the nuinber of statements
is 27. The fact that there are numerous processors and that the proces-
sor ioading is small allows Machine Il to process numerous statements in
parallel. When the statement loading exceeds 27, the sequential time re-
quired for translating wili continue to increase linearly while the Machine

il time will remnain relatively fixed at 54 msec. Assuming availability cf

g e

st v

APPENDIX XIII

256 processors, then Machine Il can average about 256/1.17 = 219 state-
ments every 54 msec. This would give Machine Il a speed advantage over
the IBM 7090 of approximately 219/27 or 8 to 1. The actual time required
for processing, of course, depeunds upon the sequence of operators and the

amount of grouping within the substitution statement.

OBJECT PROGRAM

The object program generated is shown in Table XIII-4. Segments of the
object program block are generated each time an operator is detected and
transferred to the P list. Each segment is then stored in memory in the
block assigned to the object program. Addresses within the block are de-
termined by the index of the operand in the L list and the predetermined

maximum size of any object program segment,

Some variables in the segments reside in memory and some reside in the
MPC. Each generator determines where a variable is located and gener-
ates the appropriate instructions, either READ MEMORY or SHIFT THIS
BLOCK. Upon execution, the variable replaces the instruction and the

triple is executed with the resultant then occupying the first two words of

the segment,

The object program can be executed in the same manner as the translator,
It should be noted that the execution could be done simultineously with
translation so that the statement resultant would be available only shortly

after object generation.

-334.

Lo A P—————-ar

APPENDIX XIIi

- p——— Q) alf————

58
81 <> SP
61
—
0 f 0,
— SPB sPy
18 Gt Y
G2
'8 63
1
LN
G = GEORGK
4 =308
e FOX
0 = 00G
K ® KOALA
G = GENOI
G2 = GENOZ
03 = GENO3
G4 = GENOS

Figure XllI-1 - Flow Cha:(for Triple Generation Process

-338.

-

W TR ST e

APPENDIX XIII

START

<0
&
S &)

JOE IPSWICH < HALO

Figure X1lI-2 - Master Flow Diagram

-336-

ST RIITL T ey | g

APPENDIX XIII

Airs BAKER
iojvku iei.kv
L, PL.S, 0B L. PL s 08
——t ’
NO NO
(L + i) = OPERAND —&- BAKER OPERATOR = RTERM 006G
i vES YES
CHARLIE NO
OPERATOR = EASY
LPARENS
YES
CHARLIE
NO
4 OPERATOR =
FOX
RPARENS
i jo ky YES
L. PL.S, OB
GECRGE
j=ie
|
OPERAND
PL 4
iwie
ABLE

Figure XIII-) - Able, Baker, Charlie Subroutines

-337.

. I = EWM.‘. .

Ll

APPENDIX XII1

GEOMGE

{

JOE
bjk
L. PL.S 00
iy jo k
, L.PL, S 0B
L+
{ PIOPY > RIS+) JOE
(s+k) = PL+]j = k=1

|

IEBAR tL+i) » S+ k
1
k=k+: iz
s>
WAIY FOR 3P fri=n
1
GRORGE e

e Xill-4 - Gerrge, Joe Subroutines

-138.

APPENDIX XIIL

EASY HALO
l i
ik ik
L. PL, S OB L, P. S OB
(L +i) = LPARENS

' 1

oROP
kzke=t LPARENS
APARENS
(L+it » S+ k k=k+1

izie igiey

l l

ABLE ABLE
FOX IPESWICH
— i J, b
i, j.pk . L PL S OB
(LL ! :- 5. ::‘.‘ i (L *+ i) = RPARENS
y = NS 8+ k

! !

G + k) = L’A"'Dv—“. MALO B+k) = P+
i it - 5P
IPEWICHN
WALIT FOR 3>
rox

Figure XIII-5 - Easy, Fox, Halo, Ipswich Subroutines

-339.

APPENDIX XIII

;.; 00 KOAL
} o jo &
Lk :.‘,'m. s, 08
L.PL, S OR u.' + i" '
(L+iD)= RTERM s+ .‘x;
S +k) » PL+j
F——“ SP
Ww,iT FOR §P
006G
spy
i,k
T L. PL.S CB
WAIT FOR J
$PU OR SPB L -
NIFL)
ok CALCULATE
w Pl 5, 08 LA
] B PL
OPERA TCR -
Oy UNABAY Y
% NG J
i E Y413}
. 0
o Figure XliI-6 - Dog, Koala, SP, SPU Subroutines

<340,

e oo TR R N o i AR T R e AR R T o A

APPENDIX XIil

S
4
5l
5
ke
]

sP8 GENO!
OPERATOR? (PL+joB+iQ
NIPL 4+)
NIN(PL + §))
ARITH
I: IFXP
Bk GENO & G%NO 3 B
L. PL. S OB _ RZAD MEMORY
FOR ML INST.
PL+)
N(PL + j)
NIN(FL + 1)
‘ | CALCULATE
O8 ADDRESSES -
CALCULATE
c8+i ®
1‘
STURE INST. IN
RO PLY O PAQG FAD,
! FIU. My, FMP
i
GENDY ALY
-
Figure XLIH-7 - SPB, GENOI Subroutings a

-34i.

APPENDIX XIII

GENO2 GENOS
Z) - X
: (PL+]) OB+i X ‘::::’:" i
NIPL + j) ‘ "
NIN(PL '+ j))
i
READ MEMORY READ MEMORY
FOR ML INST FOR ML INST
CALCULATE CALCULATE
Of, ADDRESSES OB ADDRESSES
])
STOME (WST IN STORE INST IN
0B PROG 0B PROG
LABS NZIG EXP
wls
GENO4

t HALT

(P +j),08+c X
NiPL + j)
NIN{PL + }))

¥

EAQ MEMORY
FOR ML INST

pa v

¥y

CALCULAYE
08 ADDHESSES

]

™ STORE iNST
q o8 MROG
HALT

Figure XIlI-8 - GENO2, GENO3, GENO4 Subroutines

-342-

ot

APPENDIX XIII

TABLE XIII-3 - COMFILER PROGRAM

Time
item Instruction Remarks P R
ABLE a SHB 1 i a-- i [7
+1 SPB 0 2 i a-- j 6 7
+2 SPB 0 3 k a-- k [7
B SPB 0 4 L addressa - L - 6 ?
+1 SPB © 5 PL addyess a - PL -~ 6 7
+2 SPB 0 6 S addiessa -S - [7
+3 SPB 0 7 OB addressa - OB . [3 ?
y+1 THS, M a e (L +4) 10 i1
+2 Lol y+1 VBIT 14 15
+3 EQ2Z y+2 y+3 18
+4 CONS BAKER OPERATOR - 1
+5 NEU y+2 y+é 18 .
+6 CONS CHARLIE OPERAND - 11
+7 | CONS VBIT - 1
BAKER a SPB 0 a i 6 7
+1 SPB @ a+l j 6 7
+2 $PB 0 a+2 k [¥
43 SPA [+) a+l L 6 7
+4 SFPB 0 a+ 4 PL [7
+$ SFB /] a+s S 6 7
+6 SPB Q a+é OB 6 7
+7 SPB 0 y+1 (L +i} OPERATOR 6 7
B LOb a+ 7 RTERM AO®B 10 1
+1 EQZ 3 B+2 0 if RTERM. } otherwise 14 -
+2 CONS DOG - 1
+3 LOb a+? LPARENS A®EB 10 1
+4 EQZ2 A g+5 0 if LPARENS,] o:herwise 14 -
+8 CONS LASY . . 1
+6 LQ6 a+? RPARENS A@®B 10 1
+7 EQ2 8 ge+8 0 if RFARENS, | otherwise 14 -
+8 CONS FOX . 1
Y MPY] a+3 14 | 18
Y] MPY v g-b 18 19
+2 NEQ vyl y+ 3 ifOthen D « A+ B+ 2
+} CONS GEORGE i 5 then D « ABC - 1
+4 CONS RTERM . 1
1] CONS LPARENS - 1
*? CONS KPARENS . A
CHARLIE o STh (-] vy! (1 e} 11 ()

NOTE: P ie the cycle time alter the block start ia which a processor is active: R is the cycle time after the dlock start
in which the result ia svailadl:

-343-

v ‘;«‘", L]
e ey S H xw‘ g e~ - ‘ - i

APPENDIX YIU*

TABLZ XIII-3 - COMPILER PROGRAM (Continued)

Time
item Instruction Remarks P R
CHARLIE +1 STB 0 B+1 jrged 17] 18
(cont) »? SPB 0 a+2 K 6| 7
43 SPB 0 a+3 L [} 7
+4 SPB 0 at4 PL [?
+5 SP3 0 a+s s [7
+5 SPB 1] a+b oB 6 7
8 SPB 0 a+l j 6 7
+1 ADD B one j = j+1.index address 21 22
2 £PD 0 v+l (L +i) = OPND [7
+3 LO7 a+ 4 8+ PL+j--PLj 25 26
+4 STO B+2 8+3 29 30
Y SPB o a Get i 6 7
+1 ADD Y onse i=i+l 10 11
+2 MWT ABLE 32 -
+3 CONS ONE

DOG @ SPB 0 a i 6 7
+] ADD a+ b one i jrjel 10 11
+2 ADD a+9o one k k =k+1 10 il
+3 SPB 0 a+l L 6 7
+4 SPB 0 a+ s PL 3 7
+5 SFB ¢ at+s S 6 ?
+6 SFB 1] a+b OB [} 7
+7 SPB 0 a+? (L +i) = OPEKRATOR = RTERM [7
+8 SPB 0 g+l } 6 7
+9 5PB 1] a+2 k 6 7
+10 THS a+9 o+5 {2 + k) 10 1i
+11 LO® o+ i NULL 14 15
+12 EQZ a1l a+ 13 18 -
+13 CONS HALT END - 1

€14 NEQ a+ il e+ 18 18
5 CONS KOALA -]
36 CONS one . i
7 CONS null . \
EASY [} 518 -] g+1) 4 14 s
1 SPR 0 Il) ¢ ?
b a2 578 0 as b k 14] 18
. «) LFA p] ard L [?
ﬁ 4 5FPB a [ALY L & ¥
: I3 Skp 1] ae+s S ® ?
" £1:4. 0 R os [Y
e? 3Pn 2 - R (L. ¢ 1) » OPERAND + LPARENS & ?
. o8 LO? ae? ari [L] 19

~344.

-

£ .
] T it e ——_" e N

e

T T T N
; ™.

APPENDIX XIII

TABLE XIII-3 - COMPILER PROGRAM (Continued)

Time
Item Inetruction Remarks P R
EASY +9 STO a+? a+8 (L+i)=8+k-1 22 23
{cont) +10 | sps 0 a+2 K 6 | 7
+11 SUB a+l0 one kz k-1 10 1n
+12 SPB 0 a+l i 6 | 7 .
+13 | ADD a+12 one 121+ 10 [n i
+14 MWT ABLE 25 . .
+15 CONS ONE - 1
FOX a SPB 0 a i [7
41 STB Q a+l0 j 14 15
+2 5TB 1] a+ll k 18 19
+3 SPB 0 a+l L 6 K
+4 SPB] a+ 4 PL [7
+5 SPB 4] a+s S b 7
+6 SP8 0 at+é 08 i PREG 7 OP code 6 7
+7 SPB 1] a+? (L. + i) = RPARENS [} 7
+8 SPB 1} a+l i é 7
+9 SPB 0 a+l k [7
+10 ADD a+8 one i+t 10 11
+11 | ADD a+9 one k+1 4] 1-
+12 L.O7 a+5 a+9 8 + k address 10 il
+13 THS, M 0 a+ il s + k) - PREC ¥ OP code 14 15
+14 LO1 a+ 13 OP MSK 18 19
+1% L.06 a+le LPARENS MSK ée 23
+16 EQZ a+ 1t g+ 17 LPARENS YES z6 -
+17 CONS HALQ - 1
+18 NEQ g+15 a+i9 26 -
+19 CONS IPSWICH - \
+10 CONS ong - 1
#21 CONS OP MSK . 1
22 CONS LPARENS MSK - 1
GEORGE o $PB [} -4 t 3 T
Al ADD Q18 one I ELES 10 18]
2 ADD g+l one X = k] 10 1l
.3 SPa 0 av) L & 7
4 sPR Q a4 hid 9 3 i
(19 sPs [a+*si S [7
o SPB 0 asve ' b H
o8 SPB s @t Uyt v o - operaton o | s
L Lot ach PRLE MSK OPERATOUR PREC R ~
] TS aste o+ 3 {o * &) 10 1t
110 Lo a9 FREC MSK L (e « k) operetar PREC TOP e 1y ;
LIE] sun as? PR L] g OP PREC - {8 r k) OF VREC 1? 14 =
;:
-345.
" P~ NI T %

APPENDIX XIII

TABLE XIlI-3 - COMPILER PROGRAM (Continued)

Time
Item Instruction Remarks b R
GEORGE +12 GTE a+ll a+l3 F3] -
(cont} +13 | cons JOE -]
+14 SPB 0 a+2 k b ?
+15 SPR 0 a+l j [7
+1é Lo7 a+ s a+1s PL+j 10 1
+17 STO a+9 a+lé (s #k) =PL +J 14 15
+18 LTZ a+ll a+23 21 -
+19 BRG a+ls a+18 54 | 85
420 NEQ a+ 19 a+2l 58 -
+21 CONS GEORGE - 1
+22 CONS PREC MSK . 1
+23 CONS SP
+24 CONS ONE
HALO a 378 0 a+10 i 14 15
+1 STB 0 a+8 § 14 15
+2 SPB 0 a+2 k é 7
+3 SPB 0 a+? L 6 7
+4 sSpP2 0 a+ ¢ PL) 7
+5 SPB 0 a+sh S 6 T
*6 SPB 0 a+é OB 6 7
+7 SPB 1] a+l j=j-ltocounterj = j+ 1 [3 7
+8 sus a+? or.e 10 1
+9 SPB [+] [tzie} [7
+10 ADD a+9 one 10 1
+11 MWT ABLE 18 -
+12 CONS ONE
IFSWICH o SPB 0 a i 6 1
+1 SPB 0 a+1d § [7
+2 PR 0 g+ 1l k [} 7
+3 SPB 0 @+ L b ?
*¢ Py [a+d PL 6 7
+8 SPa] a+h S [?
+*% SPB] a+t [o] .] 6 ?
o7 P 0 K (L ¢i) = RPARENS [y 1
-3 SPB] a+ (e + k} - PREC © OP cose [3 ?
+9 Lo? a*d @+ PL ¢+ 16 i
+10 sTO [R a+? (8 +) = PL ¢+ ; 14 1%
+11 NEQ a+3 ae+ls 14 R)
12 PRG g+ !l e+ 18 Bring 3P o ¢ 18 8 | e
(3% NEO e+ 1} o4 61 -
+14 CONS £OX . \
(31) CONS 3P
~-346.

B i L L T

APPENDIX XIII

TABLE XIII-3 - COMPILER PROGRAM (Continued)

Time
Item Instruction Remarks PIR
JOE a ADD a+9 one i=1+1 16 11
41 SUB a+8 one Jeje1l 10 11
+2 SuB a+10 one kekal 10 i1
43 SPB 0 a+s L 6 7
+4 SPB 2 a+ e PL [7
+5 SPB (/] a+ s S [7
+6 SPB 0 a+é OB 6 7
+7 SPB Q a+8 (L +{) = OFERATOR 6 7
+8 SPB 0 a+l j 6 7
+9 SPB 0 [] { [7
+10 SPB 0 a+2 | 3 6 7
+11 LO? a+$ a+ s+k-1} 14 i5
+1? STO ae+? a+ 1l (Le¢ec) »o¢k-1] 16 19
+13 MWT ABLE 2 -
+14 CONS one - 1
KOALA a SPB [[] i é 7
+1 SPR 0 a+l j 3 7
+2 SPB 0 a+2 k 6 7
+3 SPB 0 a+? L [7
+4 SPB 9 a+ e PL [7
+S SPB 0 a+h S [K
+*6 SPB 0 a+b o3 [1
+7 SPB [a+? {L +1i) = OPERATOR » RTERM & 7
+8 SPB 0 a+10 (S + k} / NULL 6 7
+9 LO6 at+ e a+l PL +) 10 11
+10 310 a+s a+9 (S + k)= PL + 14 |18
+11 NEQ a+9 a+ls 11 18
+12 BRG a+ll a+sll s 59
+1} NEQ a+ 12 a+ld L} -
434 CONS DOG - 1
+18 CONS sp
sp « SP8 0 e i [} 7
.l sPa o e+t J 5 ?
+*3 SP3 [as? k) ?
(3) SPB [} e+ L [] ?
+4 SPh [a+d PL [L
+8 SPA (] g+ 3 [} 7
*» SP8 0 [RN or ¢ ?
*? sPo o 'Yy) (o ¢+ %) i PREC ¥ OP Code . ?
*3 LO! as? OP MSK 1] 1
* LOs e* 8 ABS M3IK s i
*19 LOb [XN] NEC MEK 14 [}

-347-

APPENDIX XIl

TABLE XIII-3 - COMPILER PROGRAM (Continued)

' Time
Item Instruction Remarks P R
SP +11 MPY a+9 a+lo 18 19
(cont) 412 EQZ a+ 11 a+13 2 | -
+13 CONS SPU - 1
+14 NEQ a+ll a+15 22 -
+15 CONS SPB - 1
+16 BRG a+l4 a+l4e SPRa+ 14 2 22
+17 BRG a+i2 a+1l SPBa+ il 21 22
+18 LO7 a+l6 a+l17 25 | 26
CONS OP MSK - 1
CONS ABS MSK - 1
CONS NEG MSK - 1
SPB a SPB 0 a i [7
+1 SPB 0 a+l j 6 7
+2 SPB 0 o+2 k 6 7
+3 SPB c a+d L 6 7
4 SPB 0 a+4 PL] 7
+5 SPB] a+s s 6 7
+6 SPB 0 a+6 OB 6 7
+7 LO1 a+ll imak | SEREIEY 14 15
+8 STB 216 a+? imeak 18 19
+9 LO} @+ 12 imek 26 27
+10 STB el6 a+9 A 1] 31
+11 THS, M a+l a+ 4 (PL +)) i0 11
+12 THS, M a+8 a+ ¢ N{PL + j) 22 23
+13 THS, M a+ i0 [B N(N({PL + j)) 33 34
+14 THS a+ll a+ 1S TAB OP CODE GENO Address 14 15
+15 CONS TAB TAB - 1
+16 MWT q+ 14 av+lde START A GEN PROG 18 -
417 MPY a [] i@ 10 11
+18 LoO7 a+h a+ 17 OB + i@ 14 15
19 Lot a-18 VBIT i 18 18
+20 Lo7 a4 a+l DL+, 10 1
21 STO gt 19 a+ e Py = PL ¢ 32 23
2 CONS [] - 1
+23 CONS VBIT - 1
GENC! a SPB 0 gl {(PL ~ 3 6 :
UM apn 0 a2 N(PL ¢) B opevand & 7
«d SpPR ¢ et N{N{PL *)} A oparand 3 H
(B Sph 0 o+ 18 08 « @ --OB i@ & ?
Y N 08 Q-+ < «OP Code & ?
[RN B} a+lo F- 3] 13
re RiM ! a- 10 GOURLYE e 19
-348-
] T T T i, A TR R e

APPENDIX XIII

TABLE XIlI-3 - COMPILER PROGRAM (Continued)

Time
ltem Instruction Remarks P R
GENO1 +7 ADD a+3 one OB +ix + | 10 11
(cont) +8 ADD a+3 two +2 10 |11
+9 ADD a+3 three +3 10 11 N
10 THS a+ 4 +M 14 15
+11 CONS oCcT -]
+12 START G10 B 3 -
413 START Glo A 3 -
+14 BRG a+ 12 6 B RDM or STB 29 30
+158 BRG a+13 6 A RDM or STB 29 30
+16 LO1 a+} ADDMSK address of B operand 10 11
+17 LO1 a+2 ADDMSK address of A operand 10 1
+18 LO7 a+le a+lé RDMor STBE B 33 34
+19 Lo?7 a+1s a+ 17 RDM or S1B A 33 34
+20 LOl a+é 1@MSK i@+ for A 14 15
+21 Lol a+9 i@MSK i@+ for B 14 15
+22 STB V2 a+ e 18 19
+13 Lo? X+ 22 a+2l 22 23
+24 LO7 e+ 5 a+23 F « A addresses B 26 27
+25 STO a+24¢ a+s 30 31
+26 STO a+é a+? 22 23
+27 STO a+l9 c+8 7 38
+28 STO a+18 a+9 37 38
+29 CONS one - i
+30 CONS two - H
+31 CONS three - 1
+32 CONS ADDMSK - 1
+33 CONS i ® MSK - 1
+34 CONS EQMSK - 1
G1lo a SPR 0 -11 t !
+1 Lo a INDEXMSK 10 11
LY £Q2 ae+ a+h 14 -
+3 NEGQ a1 avr4é 14 -
+4 JONS Gt - 1
3] CONS Gl2 - [
+t BPRG Q+? [2 14]
*1 | CONS INDEX MSK . 1
Gl [} KDM Ri R = RDM 16 17
G2 e RDM s S+ STE 16 17 “
GENO2 a SPD 0 a9 (PL o+ 53 UPERATOUR [?
ol SPp '] @+ 1o Ni{PL *) OPERAND [? i
o P8 n a1t OR+(@ b ? ;
* 551 o @41t OP TGDE 6 b

-349.

BRFUNE e ol :

3]

i

APPENDIX X111

TABLE XIII-3 - COMPILER PROGRAM (Continued)

| Time
Item Instruction Remaris ‘ 1 l R
GENO2 +4 Rl 0 a+ 1l LO6 or L1O 14 15
(cont) +s RIM 1 a1 LOt ¢ L10 14 | 15
+6 RIM 2 a+tl4 STB 223 or CON3 9 4 15
+7 ADD a+2 one OB i@ + 1 H 1
+8 ADD as+2 two +2 10 11
+9 ADD 7+2 three +3 10 11
+10 ADD a+2 four + 4 10 1
+1] THS a+ 4 a+ 12 ABRS or NEG 12 11
+12 CONS ocT - H
+13 START 320 3 -
+14 BRG a+ 1} & RDM ur §TB 38 19
+l4a BRG a+ls 7 RDM or 3TB 38 39
+16 poe a+ 3 ABRSMSH 13 14
+17 EQZ a+ 16 a+19 17 -
+18 NEQ a+ 16 a+ 2t 17 -
+19 CONS ABS - \
+20 CONS NEG - i
+214 BRG a+ 17 4 13 34
+22 BRG a+ 17 s 13 34
+23 BRG a+ 17 [} 13 34
+24 STO a+ 2y a+ 44 45
+25% STO a+ 20 a+? 44 45
+26 STO a+21 a+8 37 38
+27 STO a+ 14 a+9 [¥ 4;
+23 >TO a+ 142 o+ 10 LY L%]
+29 Lo» a+ 4 v 22 $0 41
+30 LO7 ash a2’ 40 4]
+31 CONS ars - 1
+3R CONS two - 1
+3) CONS three - 1
+34 CONS four - i
38 CONS ABS MSK - t
G20 a SPB (o 6\ OPERAND [?
LB Lot L] INDEXMSX to 1
*2 EQ2 g ! as+?) 15
(3] NEQ o1 a3 14 1%
"4 CONS [aT3! -]
(3] CONS asd ‘ - \
. R [B 1 BDM ur STR A 23 %
©? ADD X3 ane ROM or STH A+) N 12
1] CONS IND MK \
9 CONY nhe . l 9
-350.
- L e — - - e
i, WS ,.ﬂ-w“ —————— i

B ettt e

AFPPENDIX XIII
TABLE XIII-3 - COMPILER PROGRAM (Continued)
Time
Item Instruction Remarks P R
G21 a RDM RI ! RDM . 17 18 :
G22 DM SI st STB . 1?7 18
SPU SPB 0 a i L3 7 .
+1 SPB ¢ a+! j 6 7 ‘
+2 SPB 0 a+2 k 6 7
+3 sep 0 a+3 L [%
+4 SPR 0 a+é PL [7
+S seg 0 a+h S [7
+6 588 0 a+éb oB 6 7
+7 LO} a+9 imsk 14 15
+8 STB 216 a+? 18 19
+9 THS, M a+l a+ 4 {PL +j) 10 11
+10 THS. M a+8 a+ 4 n(PL + j) 22 P2
+11 THS a+9 e+ 12 OP CODE GENC address 14 15
+12 CONS TAB - 1
+13 MWT a+ il Start A CENERATOR PROG 18 -
+14 MPY a [i® 16 11
+15 Lo7 a+b a+l4 OB +i® 14 15
+16 L.07 a+ 1S VBIT 18 19
+17 Lo7 at+d a+l PL + 10 1l
+i8 STOC a+ 16 a+ 17 Ri = PL + 22 23
+19 CONS imsk - 1
20 CONS VBIT - 1
GENO3 a £PB 0 a-+ (PL + j) 6 7
+1 SPB ¢ e+ 12 N(PL + 1) B 6 ?
+2 SPB] a+ 1} N(N(PL + :)) A 6 ?
+3 SPR 0 a+!8 CB+i@ 6 1
+4 SPR 208 a+ 14 QF Code b ?
(2] RIM 0 g+ 1) BRG | 13 13
- RIM 1 a+ 16 BRG 2 14 18
*7 RIM 3 a+10 DoOU B 14 i3
13] RIM ¥ @+ 10 MW T 14 18
1] RIN [} [K] CONS X3 13
*10 THS o4 o+ it 1] i
st ¢ ONS ocY . 1
.12 START o1}]
LR B CONS G .
‘14 ARC a+ il 4 BRG @+ 1} 0 n "
T BR: @12 L) BRAG (96 ¢ 0 H
L3 L) ATART ar 18) .
7 ! START @it -]
18 I CONS 10 - }
%
-351- i
- - ..WWWVQ'-Q “"fq

APPENDIX XIII

TABLE XIlI-3 - COMPILER PROGRAM (Continued)

Time
ftem thstruction Remarks P R
GENO} +19 BRGC a+ o 6 B RDM or STB 2 34
{cont) +20 BRG a+ it 6 A RDM or STB 33 | 34
+2) LO1 a+l ADDMSK 10 11
+22 LO1l a+d ALDMSK 10 n
+2) Lo7 a+ 19 24+ 21 RDM 13 A add or STB B add 7 38
+24 LO?7 a+20 a+ 22 RDM A add or STB A add 37 38
+25 ADD a+) one OB +iX + 1} 10 1
+26 ADD a+3 two + 2 10 11
€27 ADD a+3l three + 3 10 (3
+28 ADD o+3 four +4 10 131
+29 ADD a+d five + 8 16 1
+30 ADD a+3 Bix + 6 0 11
+3! ADD a+l Teven + 7 10 11
+32 STO a+l4 a+l BRGi®+6) 24 25
+33 STO a+ 18 a+ s BRGi®+06 2 4 2s
+34 STO a+ 24 a+b RD# o1 STE A 4: 4?2
435 LY a+? a+ 27 DOUBLZ 18 19
+36 S$TO a+23 a+ 28 RDM or STB B 41 °
+37 STO a+? o+ 29 DOUBLE i8 19
+38 STO o+8 u ¢+ 30 MWT 13 19
+3y STO a+9 a+ 3l CONS EXP ROUT 18 19
+40 CONS ADD MSK - 1
+41 CONS one - 1
+42 CONS two - 1
+43 CONS three - 1
+44 CONS four - 1
+45 CONS five . 1
+48 CONS six 1
+d7 CONS reven - %
Gil Qo SPB a+s ARG 1 a ?
+1l SPB até BRG [?
2 spB L1 q ¢+ 22 OB +i®+b [?
+) STh 16 (- R] - i@ - 3 4
+e LOT7 a a} PRG1@ 0 | 10 1"
.8 Lov g+l a+) BAG i@+ & 2 10 1t
G 3 SPR] -1% A ar B operand t 1
(3] 1Ol e INDMSK 10 [B
*2 (hord 6« LR 14
) NEQ 'R IR 14 -
(X] CONS G . i
*4 CONS G . 1
h BRT g-~12 i 14] N

T —

-352-

APPENDIX XI1II

TABLE XIII-3 - COMPILER PROGRAM (Continued)

¢
l Time]
Itern Instruction Remarks PI{R
G o RDM Rl Rl RDM - 16 17
[} }] a RDM St St STB - 16 17
GENO4 a SPB 0 a+ 1l (PL ¢+ j) 9 7
+] SPB 0 a+l2 N(PL +j}) B oparand 6 7 -
+2 SPB 0 a+1) N(N(PL + j} A operand [7
+3 5PB 0 a+ it OB +ix OBix 6 ?
+4 SPB 208 a+ 14 OF cade 6 7
+5 RIM 0 e+ 10 STO 14 15
+6 RIM 1 @+ 10 DOUBLF le 1%
+7 ADD a+d one OB+i@+ 1] 10 1
+8 ADD a+} two +2 10 11
+9 ADD a+l three +3 10 11
+10 THS a+ 4 a+ll 10 1
+11 CONS JCT - 3
+12 Lol a+2 ADDMSK A address 10 11
+13 Ll a+l ADDMSK B address i0 1l
+14 STB 72 a+é STOUB +i®@+20B ¢i@+3 14 15
+15 Lo? a+ 1) a+ 14 18 19
+16 STO a+ld a+d STO i@ +2 i@+ } 18 19
+17 §TO a+é as? DOUBLE 18 19
+18 STO a+ 12 a+s A address 4 15
+19 §TO a+ 13 a+9 B address 14 15
+20 CONS one
L2 CONS two
+22 CONS three
+23 CONS ADDMSK
ABS - SPB 72 a+? [7
+1 sPrn 0 a+9 ---0Bi@) 6 T
2 SPh 0 g+ 10 -+ -08{04 6 1
+3 SPa] a+é §TX 22} [b
. LO? e+ a+l STR 22y i@+ 3 10 L
[1} Lot Qq g} €+ iBe} 1o 1
b LO? e [-2 i@+ @ 18 1n
NFG [L1.4:1 T8 FIR i®s} b 4
L3} 5§D T2 [L E i e & T
[¥4 SR] a*9 ¥ KW s H
3] S$oA -4 @+ to [BN} L) k4
.q s9n 8 asé LONY @ by o
.4 LS 9 e« L _ICORENY I 1] i
FYy LUt as e+ iBed (P 10 il
2CT i FAD LR X XIS}
3 DOLUPLE .
v
=383,

B e . £ SR G P P Wm
s B - G Y i

R

%&_ i N;:*-..- TR et e

RGN
B JPRK

e
A

APPENDIX XI1I

TABLE XlIi-3 - COMPILER PROGRAM (Continued)

L Time
item Instructior. Remarks o R

F(;'l’ L] F3U i®+2 {®+3
(cont) 4 DOUBLE

) FDV i®+2 i®+3

é DOUBLE

1 FMP i®+2 i®+3

8 DOUBLE

¢ §TC 1®@+2 i®+3 EQUAL

1¢ DOUBLE

[LO6 iX+2 iX+3 ABS

+1 LO6 X2 iX+ 4

+2 STR 23 + 3

+3 A address

+4 A+ 1 addrese

Q@ Lic X ¢+ 3 iX +3 NEG

+1 Li6 iX + 4 iXes

+2 CONS 0

43 A address

+4 A+] sddress

a BRG ig+6 1 EXP

41 BRG i®+6 2

+*2 RDM A address

+3 DCUBLE

+4 RDM B addrens

3] DOUBLE

+6 MWT

*7 CCNS EXPROUT

354
pnam g

s e wa

N] M‘W*m"w -

APPENDIX X1

B auans. L LR

TABLE XIII-4 - OBJECT PROGRAM
Addrass Instruction Remarke
OB + 5@ FMP 7@+ 2 7® +3 A8
+1 Double
+2 RDM A
+3 RDM B
OB + 90 FMP 9@ + 2 9@ + 3 Ce+D
+1 Double
+2 RDM Cc
+3 RDM D
OB : 7@ FAD 120 + 2 120 + 3 A+B C+D
+1 Double
+2 STB 0 7® A+B
+3 STB 0 99 C+D
OB + 15@ BRG 15@ + 6 1 E°*F
+1 BRG 15@ + 6 2
+2 RDM E
+3 Double
+4 RDM F
+5 Double
+6 MWT 15@ + 7
+7 CONS Exprout
OB + 18@ LOb 18@ + 2 18@ + 3 ABS 1
+1 LO6 189 + 2 18@ + 4
+2 STB 223 1860 + 3
+3 RDM 1
+4 RDM I+1
OB + 17@ FAD 170 + 2 178+3°'| Et F+ABSI
+1 Double
+2 STB 0 150
+3 STB 0 180
B + 120 FMP 120 + 2 120+ 3 (A« B Ce+ D) (EIFABS]
+1 Doutle
+? STB 0 ™
+3 STB 0 1TX
OB + 240 BRG 240 ¢+ b 1 Jt K
+1 BRG 249 + & 2
+2 BRG J
+) Double

~355-

S

[TSR

Gactfc,

APPENDIX XIlI

B

‘'TABLE XIII-4 - OBJECT PROGRAM (Continued)

Addross Instruction Remarks
+4 RDM - K
: +5 Double
+6 MWT 24@ + 7
; +7 CONS Exprout
OB + 250 FDV 280 + 2 280 + 3 L/M
+1 Double
+?2 RDM L
+3 ROM M
OB + 260 FSU 26804 2 260 + 3 JtK-L/M
+1 Double
+2 STB 9 240
+3 STB 0 280
CB + 239 Lio 23®@ + 3 23@ + 3 NEG P
4] L10 230 + 4 230 + ¢
+2 CONS 0
+3 ROM P
+4 RDM P+1
OB + 37@ PMP 27@ + 2 37@ + 3 Q*R
+1 Double
+2 RDM Q
+3 RDM R
OB + 350 FAD 350 + 2 350 + 3 NEGP+Q * R
+1 Dcuble
+2 STB o 238
+3 STB 0 178
OB + 31® FDV 3@+ 2 3@+ 3 (it K-L/MV/(NEGP+Q « Rj
+1 Double
+2 §VB 0 269
43 818 0 1Y)
CB s 219 FAD 210 + 2 21@ + 3 (A ¢ B¢ « D)o (E Y F+ABST)
R +1 Double
"" +2 SY8] 2@ (31 K~ L/MINED P+ {3 ¢ R)
5 .y =TH ¢ e
o 28 870 29+ 2 28+ 3
+1 Doshle
23 CONS 2ie
¢ +3 ! cans z ~

-35%6-

a5 I TN e . ST A

P e i g

*i
;
!
!

LR

APPENDIX X1V . PROGRAMMING MANUAL FOR MACHINE II

INTRODUCTION

The Machine I parallel processor described in Appendix VI has some dis-
advantages. While many tasks could be run concurrently, each task is

sequential and communication between tasks is difficult.

In Machine II, each task (instruction block} can have concurrently oper-
ating instruciions and commurication between tasks is better, Machine I
has the advantage of better machine utilization since a programmer can au-
tomatically introduce concurrency without spending time setting up new
tasks. Machine [I has the advantage of transferring results between tasks

without memory references.

Instructions generally consist of an operaticn code and two operand fields,
When a task is started, any instruction in the task will be performed when
its cnerands are available: thus many instructions in a task could be exe-

cuted simultaneonusly.

BRIEF DESCRIPTION OF MACHINE

Machine I consists of a multiaccess merging-separating memory (see
Appendices VI and VII) connected to I/O devices and a multiprocessur con-
trol unit {MPC) as diagramimed in Figure XIV.1. The MPC siores 3 large
set of instructions (cn the order of 1000) and {etcheg their operands and
teeds them to processors for execution. The number of processors may
be in the hundreds. The channel between the MPC and the wemory is

large enough to permit the teanster of 1044 words at one time,

WORD FORMATS

in memory., 4 ward congisty of a 24 -1t address and 5 32-1t data field. e

-3587-

. o

APPENDIX XIV

MZEIMORY REQUEST SORTER

} LX) “ sea
“
/o 170 170
l |
MEMORY ~ — |
MULTIACCESS ROCESSOR
MERGING-
SEPARATING MULTIPROCESSOR jhg——snd PROCESSOR
P804 CONTROL UNIT e TASK LEVEL
: COMPUTER
—aed PR OCESSOR -

Figure XIV-1 - Block Diagram of Machine II

Programming is done with 16-bit addresses. Up to 256 different pro-
grame may be running concurrently, each with its own protected set of
65,536 addresses., A program cannot reference another's address ex-
cept through the monitor. A given address may be empty, contain one
word, cr coniaia several words. When more than one word is at the
same address, they are arranged in order of their contents. A normal
reference to an address will provide the word whose contents is the least
of all words at the address, A special threshold memory reference al-
lows the retrieval of the least word at an addrass whose contcnts are not
below a specified threshold. This allows instant retrieval of an item in a

table.

3 . . .
i - 1 and is written in normal

An integer is in the rangs } - ?.3l to ¢
ONEs -complement form (sign bit is 0 for positive numbers. | {or nega-
tive numbers). Several integers at the same address will be ordered

with positive integers f{irst in increasing order then negative integers in

v decreasing order of magnitude. Certain integers are shown below:

-358-

e B o S R, "SR, S _— 4 -
SN ¥ gy * N ~ - .) -

Im— e S e L e e R S ——— w.. R Mo A G - - e A e o s

—

APPENDIX X1V

Integer Representation .

277 -1 011 1111 1111 1111 111} 111l i1l 111

-2 031l 111l 111l 1111 1111 1111 1111 1110
0000 0000 00OOC 0000 0000 0000 0009 0010

1 0000 0000 0000 0000 0000 00600 0000 0001
+0 0009 0000 0000 0000 0000 0000 0000 0000
-1 1111 1111 1111 11l1 1111 1111 1111 1110
-2 1111 1311 1111 1111 1111 1111 1111 1101

2 -231 1000 0000 00G0O0 0000 0000 0000 00OC 0001

l - 231 1000 0000 0000 0N00 0000 0000 0000 0000

A floating -point number consists of a fraction sign, an l1-bit exponent
(the fracticn is multiplied by any power of 2 between 2"‘1024 and Zl°23)
and a 20-bit fraction. A double-length floating-point number has a 52-bit
fraction. A positive floating-point number has a fraction sign of 0 and

the exponent is biased; for example, 0 represents 2'1024. The fraction is
in the range -1 to 1. A negative floating-point number is formed by com-
plementing every bit (sign, expcnent, and fraction). Certain single.length

floating-pointnumbers are shown on the. next page. Note that with this

representation a table of positive normalized floating-point numbers can

be put in order simply by putting their representations in order; this for-
mat allows threshold scarches on positive normalized floating-point num-
hers. Negative normalized floating-point numbers will be put in descend-
ing crder.

Instructions are read into the MPC in blocks of from | to 256 instructions

apiece. An instruction block is stored at one address. The instruction

format is:
Number Operation code A B
(3 bits) (8 bits) (8 bits) (8 bits)
-359.

APPENDIX XIV

Number Representation (single-length)
0.5 x 21943 o111 1111 1111 1000 0000 0000 0000 0000
0.5 x 2! 0100 0000 0001 1000 0000 0000 0000 0000
0.5 x 2° 0100 0000 0000 1000 0000 0000 0000 0000
0.5 x 2" 0011 1111 1111 1000 0000 0000 0000 0000
0.5 x 271924 0000 0000 0000 1000 0000 0000 0000 0000
0 0000 0000 0000 0GOD 0000 0000 0000 0000
0.5 x271%%% 100 1101 1101l 1111 1111 1111 111
0.5 x 2" 1100 0000 0C00 0111 111' 1111 1111 1111
0.5 x 2° 1011 1111 1111 0111 1111 1111 1111 1111
0.5 x 2! 1011 1111 1110 0111 1111 1111 1111 1111
0.5 x 21923 1000 0000 0000 Gill 1111 1111 1111 1111

The number identifies the instruction in the block; each instruction in a
block is given a unique number from O to 255, The operation code identi-

fies the operation while A and B usually identify operands,

An instruction block is read into the MPC in one piece and the instructions
in it may be executed in any order (any instruction is executed whenever
the reguisite number of ope.ands are available). The operands for in-
structions may be memory words, results of other instructions in the
same block, results of ingtructions in the block that caused a tlock to be
read into the MPC, or results of instructions in any block that a block
causes to be read .nto the MPC, Several indtruction blocks may be in the

MPC at one time.

OPERATIONS

a. General

Fach operatiun specifies one or two uperands and nas options that sllow

-360.

s

S

APPENDIX XIV

erasure of its operands. When the result of an operation is being used by
several other operations, one and only one of the other operations should

erase it, as discussed under Item 4, i below.

b. Arithmetic and Logic

(1) Operaids

The operands in any of these operations are the results of the operations

numbered a and b in the same block as the operation.
(2) Fixed Point
ADD Result is (a) + (b)
SUB Resultis (a) - (b)
MPY Resuilt is {a) * (b)
DVD Pesvit is (a) / (b)
MOD Result is (a) Mod (b)
Arithmetic is done modulc 23Z - 1. Negative zeros are never generated.

The operation ADD, A is similar to ADD except that the result in (a} is
erased. Th:is alsov is true ior ADD, B and ADD, AB and all other fixed-
point operations. There are a total of 20 fixed-point operations, Over-

flows will be flagged.

(c) Floating Point
FAD (a) + (b)
FSU (a) - (b)
FMP (a) * (b)
¥DV (a) / (b)

Operands and results are norma! <ingle-length floating-point numbers,
Each vperaticn has three crase op*ions indicated, for example, by FAD,
A; FAD, B; FAD, AB., which cause erasure of (a), of (b) or of (a) and (b),

-36l.

APPENDIX XIV

respectively. There are a total of 16 floating-point operations, Over-
flows will be fiagged.

(4) Double-Length Floating~Point

Any of the four floating.point operations may be made double-iength by
putting the operation DOUBLE in the instruction following the single-
length operation; if DOUBLE is numbered n + |, the single-length oper-
ation is numbered n. The continuation of the double-length result is
numbered the same as the double operation. As an example, the cro-

gram
100 FAD, A 3 6
10! DOUBLE 0 O

vould treat the results numbered 3 and 4 as the A operanc, the results
numbered 6 and 7 as the B operand, and would numbe. the resultant sum
as 100 and 101, The erase A option causes erasure of the results num-

bered 3 and 4. There is one double operation.
(5) Logic

The logic operations combine the corresponding bits of A and B with any
of the 16 poasible Boolean functions of two variables. They are listed at
the top of the next page.

Each of these operations has erase options; for exampie, L00, A or L0O,
B or L00, AB, which cause erasure of A, of B, or of A and B, respectively.
There are 64 logic operations.

(6) Conversions

FXFL (Fixed-to-Floating) - The fixed point result numbered a is converted
to floating point. Field b is unused. If this operation precedes a double
operation, a doubie-lengih floating point number is created. FXFL, A
erases the rasult numbered a.

FLFX {Floating-to-Fixed) - The floating-point result numbered 4 is

-362-

APPENDIX XIV

LO0 0 (zeros)
1.01 (A) A (B) (and)
L02 (A) A (B)

L03 (A)

Lo¢ (A) A (B)

105 (B)

LO6 (A) @ (B) (exclusive or)
Lo?7 (A) v (B) (or)
L10 (A) A (B)

L1l (A} @ (B)

Li2 (B)

L13 (A) v (B)

L4 (A)

L1S (A) v (B)

Li6 (A) v (F)

L1? 1 (ones)

converted to fixed-point., Overflow is flagged. FLFX, A erases the

operand a.

DLFX (Double-Leng:h Floating-to-Fixed) - The double-length result
numbered a and a + | is converted to fixed-point. Overflow is flagged.
DLFX, A erascs operands aanda + |,

{7) Conclusions

In each of these oporations, the operands are results of other instruc-
tions in the same block and the resuit is left numbered the same as the
instruction that caused it. K

~363-

T e e —— e e m-—-ﬁ_
-

APPENDIX X1V

¢. Shift

In the shift operations, the a field contains a shift conatant in the range

0 to 255. A shift constant in the range 0 to 63 means a left-end-around
shift of from 0 to 63 places. A shift constant in the range 54 to 127
means a left end-off shift of from 0 to 63 places (zeros are written into
the right side of the result). A shift constant in the range 128 to 191
means a left end-off shift of 0 to 63 places (ones are written into the right
side of the result). .\ shift constant in the range 192 to 255 means a right

end-off shift (the sign bit is written into the left side of the result),

In summary:

0 £a$63 Shift left end-around a places,
64 £ 2 S 127 Shift left end-oif a-64 places {write zeros)
128 £ a S 191 Shift left end-off a-128 places (write ones)
192 $ a €255 shift right end.off a-19% places (write sign)

The operand is specified in the b field. It is always left alone or erased
and the result of the shift instruction is the shifted operand. For the STB
operation, the operand is in the same block as tke instruction (Shift This
Block)., For the SPB operation, the operand is numbered b in the previous
blcck (§hu’.ft Ercvions Elock), {The previoue bhlock ie that block that con-
tained the start instruction that started this block.) For the SPR oper-
ation, the operand is in the previons block b places relative o the start
instruction that started this tlock (_S_hift Ere vious l_?_uelative) (b is added to
the number of the start instruction modulo 256), The STB, B; SPB, B;

and SPR, B operations cause erasure of the operand.

Any shift may be made a doubie -length shift by following the instruction

with a DOUB LE operation. As an example, the program
43 SPR, I 70 13
44 DOUBLE ¢ 0

would take the results of the instruction. 1a the previous block, which are

~i6hd-

* —— iy -~ ‘L

W AR e

N

ot

APPENDIX XIV

the 13th and 14th instructions following the start instruction, erase them,
put them together in a double-length word (the 13th reault to the leit},
shift them left end-off 6 places (6 places on the left are lost, 6 places in
the right half travel to the left half and 6 zeros are written in the right
half), then number the resultant halves as 43 and 44 in this block.

In all left shift operations, the result is tlagged if overflow occurs.

d. Bring

The shift operations SPB and SPR allow a block to retrieve an item from
the block that started ix. The BRING operation (BRG) allows a block to
retrieve an item from a block it starts. The a field identifies the block
by specifying the start instruction in this »?..ck which started the block
containing the op.rand. The L field specifies the number of the result
in that block. The result of the BRG is the particular operand. RBRG, B

erases the operand in the started block.

Fieid a of a BRG or BRG, B operation may refer to a conditional start in-
struction thatwas not satisfied. Inthis case, the first start instruction or

satisfied conditional start instruction whose numher :s above a is selected
and reference rmude to the block it started. If nc such start exists, an in-

terrupt occurs.

e. Memory Refsrences

{1) RDM (R2ad Memory)

This has as a result the word in memory whose address is (a. b) (a and b
are read as one 16-bit field to form the memory address). If the.: is
more than one word at the address. the one whose contents is leant is

chosen., RDM., M erases the werd in memory.,
(2) RIM (Read Indirect Memcry)

The lo right-moat bits of the result b in this block is used as the memory
address aiter beiny incremented by an amount fromn =128 t6 127. The in-

crement is in the a {:cld of this instruction. RIM, B erasas th” base

-365.

- - « T - . . RSN

©
“Z,

S

,
e H .
B R S SR A

APPENDIX XIV

memory address, RIM, M erases the word in rnemory, and RIM, BM
erases bhoth,

{3) THS (Threshold Search)

“This has as a result the word in :ma2meory in a given add:-ess whose con-
tents are just above a thresheld. The memory address is specified by the
right-most 16 bits of the reeult in this block numbered b, The threshold
is the result rumbereu a,

THS, M erases the memory word, THS, A eras=s the result a in this
block, and THS, B «rases the result b in this block. THS, AB; THS,
AM; THS, ABM; and THS, BM erasa2 the indicated combinations of these
iterns. '

In THS, lack of the desired memory word czuses a search in the higher
memory addresses with the retrizval of the .memoi-y word whose contents
is the least in the first nonempty memory address. This item will be
erascd if the memory erase option ia specified, Care shoula be exex-
cised to prevent unwanted erasures. The result of a THS is flagged if it
comes from an address different {rom the specified address.

{4) STO (Store)

This causes the storing of a resul® into memory. The memory address

is the right;mou 15 bite of the result numbered b. The result to be store:l
is that numbered a. STO, A erases the a-vesull, 5TO, B erases the b-
vesult, and STO, AB erases both. The store operations themaelves have
no results. No mamory wirds are over written; any words at the speci-
fied memory address will be <#pt and the naw memozry word added to that
address. o |

i. Irstruction Blnék Starte
(1) START ‘

This causen . an iastruction block to be put in the MPC for execution. The
T maemoty addrass ot the block is cpcciiic_é_ by the right-rnost 16 bite of the

-366-

== " e g R -~ o .
e M‘W i

{

APPENDIX XIV

result numbered b in thia block. START B is similar to START except

that the result numbered b is erased.
{2) Conditional Starts

The condition of a result in a block can be used to start another biock with
the same priority. The a tield specifies the result to be tested. The
memory address of the block t. be started is contained in the right-most

16 bits of the result numbered t. The conditional starts are:

GTZ- star ;v {a) >0

LTZ startif {(a} < 0

GTE start if (a) 20

LTE startif (a) £0

EQZ start if (a) = 0

NEQ star:if(a) # 0

FLG start if (a) is flagged
UNF start if (a) is unflagged

Each conditional start has erase options; for example, GTZ, A erases
result a, GTZ, B erases resul: b, and GTZ, AB erases hoth, These

erasures occur whether the condition iy satisfied or not.
(3) SUFER (Supervisor)

This operation brings a supervisory routine into the MPC. Tne a and b
fields specify which routine, The routire may expect to obtain certain
parametersg from results stored relative to the SUPER instruction, Su-
pervisory routines are allowed certain privileg2d operations denied nor-

mal routines.
(4) M WAIT

This (s an unconditional start instruction except that it s not executed
until all memory operations (RDM, RIM, THS, STO) in tais block have
been executed,

-367-

Lat'S

-

=

APPENDIX X1V

8- EPB (Erase Previous Block

This causes all results in the previous block between and including a and
b to be erased, EPR (Erase Previous Block Relative) is similar except

a and b are relative to the start instruction that started this block.

}_1_. JONST Counstant

The operation CONST has as a result the number stored in the a and b

fields. Sixteen zeros are inserted in the left-most places.

i. Erasures

If a result is used by only one operation, that operation should erase it.
If used more than once, then it should be erased by (1) the highest num-
bered operation in the lowzst priority block started by the highest num-
bered start instruction that uses it; or if no started block uses it, then
{2) the highest numbered operation in the same block that uses it: or if no
cperation in the block uses it, then (3) the highest numbered operaticn in

the previous block that uses it,

EXAMPLE PROGRAMS

a, POLY

-

POLY evaluates a fourth-degree polynomial in X using double-length
floating-point arithmetiz. The coeflicients Cor €» €5 €30 Cg4 are stored
in POLY + 1 through POLY + i0. The variable X is obtained frem the
calling block The eniry should leave the left-hal? of X two results ahead
of the START POLY instruction and the right-half of X one result ahead.
POLY erases X and leaves CO + CIX ¥ CZXZ + C3X3 + c4)(4 in results |
and 2.

In Figure XIV.-2, Instructions 3 through 14 are executed first to obtain
the cucetficients and X. Instructions 3 and 4 erase X in the calling pro-
gram. Instructions i5 through 20 are executed next. On the third step,

Inqatructions 21 through 28 are executed. On the tourth step, Instructions

« 368

R CeaAe .o B e+ s N - s - “ —
i G, TP,

e AR W TR BTNy

APPENDIX XIV

ADDRESS NO. oe A] RESULT
POLY 1 FAD, AR 29 3 2
C fCX#CX fCK #CX
2 DOUBLE 0 [}
3 SPR, B [} -2
4 SPR, B [} -1
s ROM POLY + 1
8 ®DM POLY + 2
7 ROM POLY ~ 3
) ROM POLY + &
9 RDM POLY <+ 8
10 ROM POLY S 4
+
11 ROM POLY L c
12 ROM POLY+ 8 3
13 ROM POLY + 8
14 ROM POL.Y + 10
18 FMP 3 3
16 OOUBLE 0 o
17 FMP, A T)
18 BOUBLE 0 S
19 FMP, A 13 3
20 ocueLE [[}
21 FAD, AB s 17
c 4 c X
22 DOUBLE 0 3
23 FNP, A 9 15
24 OoUBLE] o o
28 EMP, AB I [} 15
26 DOVBLE i1 o o
27 FAD, A " 19
c_+ C x
20 DGUBLE 0 ¢ s
29 FAD, AB FT} P 2
- 1E X+ Ex
30 DOUBLE (-] I 0
L1 EMP, AB 25 27
e’ <, x4
2 DOUBLE c ¢ }
POLY ¢
c
PQLY + 2 a
POLY + 3
<
POLY + & t
POVY ¢+ B
c
POLY ¢+ & b
FoLY » 7
<
POLY + & 3
ROLY ¢+ 9
<
POLY ¢ 10 e

Figure XIV.2 - Example of POLY Program

-369-

¥
¥

o e

X

!

APPENDIX XIV

TREE 1 SPR, 8) -2 N
2 SPR, 8 0 - PROG
3 CONSY 0 1 1
4 START, B °) START TREE ¢+ 1 WITH INCEX 1
$ CONST TREE +
TREE + | i PR 0 ~ i
\ 2 START -t 4 START PROG WiTH INDEX 1
3 SR, B 0 ~ 3 N
4 SPN, B 0 -2 PROG
] $hN 0 -y i
(] .72, 8 19 9 START TREE + 20F 21 < N
7 £Qz, @ 13 10 START TREEC + 3IF 2l = N
[} GTZ, AR 13 1" STARY TREE+4IF2I > N
9 CONST TREE + 2
10 CONST TREE + 3
11 CONST TREE + 4
12 SPR, B 1 -1 21
13 SUB, A 12] 21~ N
TRAE + 2 | SPR 0 - 3 N
1 sPR 0 -2 PROG
3 SPR 1 - 21
4 START] 9 START TREE + | WITH !NDEX 21
s 3PR, 3 0 -3 N
[SPR. B 0 -2 PROG
7 SPR, & 129 - 1 21+ 1
[] $TART, B ¢ J STARY TREE + 1 WITH INDEX 2] + 1
3 CONST TREE + 1
YREE + 3 ' PR, B -] - & N
2 (1.1 o -9 PROG
) PR, 8 1 -2 2
[} STARY. 8 0 _: STARY TREE « 1 WITH (NDEX 2!
~ s CONST TREE + |
! frneeea | 1] gom I - [-2 1

Figure XIV.3 . Example of TREE Program

-370-

e — - " N
T -y —_ = T‘!l'!'\;-

APPENDIX X1V

29 through 32 are executed, On the fifth step, Instructions 1 and 2 are

executed,

b. TREE

TREE (see Figure XIV.3) is a program that wiil cause N executicns of a
program specified as PROG, each execution with a different index I, I =
1, 2, . . ., N. PROG should be written to expect I one location ahead

of its start instruction and it should erase 1.
TREE is entered with
a-2: N
a -1: PROG
a: START TREE
and it erases N and PROG.

TREE consists of five instruction blocks, TREE, TREE+ 1, . . .,
TREE + 4, and 33 instructions.

6. CONCLUSIONS

The normal operations of a multiprocessor design have been described.
There will also be other operations for use by the monitor. This ma-
chine has the advantage of having a machine language wherein parallel
operations can be expressed and executed easily and commuaication be-

tween concurrently operating portions of the programs can be accomplished,

7. OPERATIONS THAT LEAVE A RESULT

a. Fixed Point

ADD ADD, A ADD, B ADD, AB
SUB SUB, A SUB, B SUB, AB ’
MPY MPY, A MPY, B MPY, AB
DVD DVD. A DVD, B DVD, AB
!

-37)- L

i A

. e ¥ s

I S

s
Iy
i
E
;

APPENDIX XIV

MOD
FLFX

MQOD, A
FLFX, A

MQOD, B
DLFX

b. Floating Point (Can Be Double Length)

o

FAD
FsU
FMP
FDV
FXFL

Logic

L00
101
LC2
Lo3
LO04
LO5
L06
Le7
L10
L1l
L2
L13
L14
Lis
L16
L17

FAD, A
FSU, A
FMP, A
FDV, A
FXFL, A
100, A
Lo, A
Loz, A
103, A
1.04, A
L05, A
1.06, A
Lo7, A
L10, A
Lil, A
L12, A
L13, A
Li4, A
L15. A
L16, A
L17, A

2. Shift (Can Be Double Length)

STB
SPB
SPR

-372-

FAD, B
FSU, B
FMP, B
FDV, B

Loo,
Lo,
Loz,
103,
L04,
L05,
L06,
o7,
L10,
Lil,
L1Z,
Li3,
L14,
L15.
L16,
L7,

foo BN B o= BN o< I o A o < B v < B o o L o« L « + R B o « B o Y L o « I o <

=

MOD, AB
DLFX, A

FAD, AB
FSU, AB
FMP, AB
FDV, AB

L00, AB
1.01, AB
L02, AB
L03, AB
L04, AB
L05, AB
106, AB
107, AB
.10, AB
Ll1l, AF
L12, AW
Li3, A3
Li4, AB
L15, AB
L16, "AB
Ll7, AB

APPENDIX X1V

e. Bring
BRG BRG, B
& Sgecial
DOUBLE
CONST
8. Memor
RDM RDM, M
RIM RIM, M RIM, B RIM, BM
THS THS, A THS, B THS, AB
THS, M THS, AM THS, BM THS, ABM

8. OPERATIONS THAT LEAVE NO RESULT

a. Erases

EPB EPR
g. Store
STO STO, A STO, B STO, AB
<. Starts
START SUPER M WAIT START, B
GLz GTZ, A GTZ, B GTZ, AB
LTZ LTZ, A LTZ, B LTZ, AB
GTE GTE, A GTE, B GTE, AB
LTE LTE, A LTE, B LTE. AB
EQ2Z EQZ, A EQZ, B EQZ, AB
NEQ NEQ, A NEQ. B NEQ., AB
FLG FLG. A FLG, B FLG. AB _
UNF UNF., A UNF, B UNF, AB !

-

-373-

PR T T

y
i e gy
L r® ot et /

- g g

o

X,

S

o BRIy sy W T O e

$

APPENDIX XV - BASIC ORGANIZATION OF MACHINE 1I

INTRODUCTION

Appendix VI describes a parallel processor organization referred to as
Machine I.

assignment scheme, automatic concurrency within tasks as well as con-

Machine II was designed to have a more dynamic processor

current tasks, and a multiprogramming dynamic priority capability. Ap-
pendix XIV describes the machine language and programming considera-
tions; this appendix describes the hardware implementation.

GENERAL DESCRIPTION

Figure XV-1 is z block diagram of Machine II. The memory is a multi-
access parallel merging-separating memory (see Appendixes VI and VII)

—
[~a] TASK
'
JL- LEVEL
l’ ' - . ” - a
1/Q /0 170 (<] AROC PROC COMPUTEN
]

11

MEMORY

"EQUESY MUL T PROCESSOR

Ry

Figure XV-1 - Block Diagram of Machine U

&

APPENDIX XV

with many (on the order of 1000) parallel channels to the multiprocessor
control. It is needed as a store capable of reading and writing many items

of data simuitaneously so that the machine is not memory-limited.

The 1/0 devices consist of backup memories (core storage, disk storage,
drumn storage, tape sctorage, etc.) and normal I/O units {card equipment,
printers, consoles, channels to other machines, etc.). The number of
1/0 channels can be in the hundreds and all channels may be operating at
the same time to give the machine a high I/0 data rate. The fastar 1/0O
units can te connected to more than one I/O channel so more than one

word couid be transferred in any one cycle,

Each processor is a simple three-register arithmetic unit capable of per-
forming the arithmetic-logic operations in the instruction set. Double-
length operations are performed by connecting two adjacent processors.
The result of each operation is transferred back to the MPC immediately
after execution, freeing the processor {~r another instruction that may
come from a different program; this rule simplifies the implementation
of interrupt, multiprogramming, recovery from processor failure, and
other matters in the machine. The number of processors may be in the

hundreds.

The task level computer i3 used tc irnplement a dynamic task priciity
scheme wherein each task can be assigned a certain percentage of ma-

chine capacity and is given execution time at regular intervals.

The memory raquest sorter (LRS) receives read and write requests from
the I/O devices and procestors orders them by address and daca fields,

and transfers them to the memory.

The multiprocessor control (MPC) 15 the heart of the machine. In one
sense, the MPC acts as a switcnbeard, connecting all the various parts
of the machine together und allowing hundreds of data transters to take
place simultaneously. In another sen:e, 1t acts as a flexible buffer match.

ing the data rates in all the data transfers. In still another sense, 1t acts

3T

R L . L T .) -
" Y TRy
4
1

APPENDIX XV

as an extensive "instruction look-ahead" unit arranging for the retrieval

of instruction blocks and operands, matching the operands to their instruc-
tions, dispatching the instruction-operand sets to processors, and storing
intermediate results. The MPC is a sorting memory with certain added

features,

MEMORY

The multiaccess parallel merging-separating memory is essentially that
describec in Appendix VII with a few modifications. The format of a word

in memory is shown in Figure XV-2,

The X and Y fields designate six different kinds of items. The memory
cycle has eight steps:

1. Input new words, read requests, and read and erase

requests
2. Merge
3. Flag requests and associated memory words
4. Separate flagged items
5. Present requested words for output
6. Merge
7. Flag request's and memory words to be erased

8. Separate flagged items and erase thcm

>

ADDRESS DATA l B 4
24 Y B ry i)
A

|

Figure XV-2 - Memory Word Format

-377a

*

e

APPENDIX XV

The memory cycle is longer than described in Appendix VII because of the
need for reading blocks of data (su-h as instruction blocks}, With blocks
of data, there is no convenient method for combining the reading and the
erasing functions; therefore, in Step 5 the data are read but not erased
and at the end of Siep 8 the data are erased by overwriting it with new r-.-
quests in Step 1 of the next cvcle. An approximate cycle time can be ob-
tained by assuming 150 nsec per clack period except during separates,
where 250 nsec should be assumed. Using these assumptiens and the

{fact that the even-rumbered steps take n ¢l. ™~ pulses (for a 2"-werd
memory), a cycle time of 0. 8u + 0. & psecc is obtained; for exampie, a
32,75L-word memory has a cycle time of about 12, 6 usec. In each cycle,

1000 items or so may pe -etricveua,.

There are six types of items in memory desigrated with the following X
and Y fields:

X

0 0030 - Multiple read request (lower limit)

0091 - Multiple read and erase request (lower limit)
0010 . Dead request

0911 - .iead and erase request

0120 - Normal memory word

0000 - Upper limit

- 0 © D

Each request has a corresyonding upperdimit,

At the start 0. a cycle, the MRS presents to the lower pari of mamary an
inverse-ordered set of requeadts, upper litnits, and new memory words
(Step 1). During Step 2, these are merged with existing memory words,
During Step }, the following iteme are flagged ov setting their leftmost

Y -field bits:

{. Each request and upper lLimit

-378-

A TPy S . . TG, TP e _ . . ———
T S o - - - " N

S RTYPPP ¢ S P

APPENDIX XV

2. Each memory word intervening between a multiple

request and an upper limit

3. Each memory word that is directly above a request

During Step 4, the flagged items are separated from the unflugged and
sent to the lower part cf memory. During Step 5, the MPC reads the
flagged items. If the number of flagged items exceeds the channel ca-
pacity, the procedure is different: the upermost upper limit in the chan-
nel is picked as a dividing point and it and all words higher than it have
their flags reset while all other words are read by the MPC (the words
whose flags were reset will remain in memory for the next memory cy-
cle}. During Step 6, all items are merged. During Step 7, the flags of
any unerased memory words are reset. During Step 8, all flagged items
are separated from the unflagged, sent to the lower part of memory, and
changed to all-zero memeory words (0100 in the Y field) or overwritten

with new requests from the MRS.

PROCESSORS

Each processor is a three-register arithmetic unit and an instruction
register. The instruction register contains the operation code and task
identification. In each cycle, the MPC-processor interface can transfer

the following.
1. Operand A from MPC to processor
2. Operand B from MPC to processor

3. Operation code and program identification (packed

into one word) from MPC to processor
4. Result of last operation from processor to MPC

During each cycle, the processor performs the indicated operation.
Double-length uperations ure two adiacent processors. One receives

the upper halves of the nperations and 4 speciaily flagged code (to in-

dicate upper half), the other receives the lower halves and a specially ¥

-379. '

w

»

L SO

@
£

%"ﬂ”‘“ R o W T R SO s
B . ——- ;

r

APPENDIX XV

filagged operation code (to indicate lower ha 4 connection between ad-
jacent processore is used for the necessary interchange of data between

the processors. The task identification is fed to the task level computer
(see 5. below) A memory request is transferred to the memory request

sorter (see 6. below),

TASK LEVEI COMPUTER

When a computer system is being tirne-shared by several tasks, a means
is needed to transfer control between the tasks, The means could be hard-
ware or software or a combination of the tws. In a system with more than
one processor, the implementation is complicated by the fact that a given
task may be using a dynamic number of processors; to keep the processors

busy, the means for precessor assignment should be fast.

In Machine II, all instructions ready for execution are kept in a list in the
MPC ordered by "task levels. " The tisk level is a number assigned to an
instruction block upon entry into the MPC; it governs the priority of the

block relative to all other blocks in the MPC. Blocks with lower task lev-
¢ls are preferred to those with higher task levels. On each execution cy-
cle, all processors interrogate the instruction list; this keeps the proces-

sors busy regardiess of the changes in any one task.

The task level computer receives task identifications fromn the processors
and uses this information to keep track of machine usage and to update task
levels. The updated task levels effect the read-in priorities of new in-

struction blocks, The example below illustrates the scheme.

Let Machine II have four tasks, A, B, C, and U, and suppose it i5 desired
to give Task A 50 percent of the machine capacity, Task B 30 percent,
Task C 10 percent, and Task D 10 percent. Give each task an integer, O,
taat is inversely related to tts desired capacity. A suitable set of A's in
15, &

this exaraple 15 3 R T Y - T - 1%, The tasl dentif:-

A B
cation contauns A as a subfield

C

D

-380.

Eaan. 2 Pl e

APPENDIX XV

On each execution cycle, the task level computer increments each task
level by the product of the A for the task and the number of processors
used by the task. This information is contained in the task identifica-
tions fed from the processors. This operation causes the task level for
a task to increase at a rate proportional to its current machine usage
and its A. The task levels govern the priority of the tasks in future com-
petitions; this has the effect of keeping the task levels together since the
tasks with lower levels will win future competitions; causing their levels

to increase up to the higher task levels,

The example illustrates this. Let Machine II have 150 processors and
assume that all tasks want to use 100 processors ii given the chance. Ta-
ble XV.1 shows the task levels at successive execution cycles assurning

a given initial condition. Here, Machine Il is used as follows:

Task A, 1050 processor executions (50 percent)
Task B, 650 processor executions (31 percent)
Task C, 200 processor cxecutions (9.5 percent)

Task D, 200 processor executions (9.5 percent)

These percentages are close to the desired percentages (50, 30, 10, and
10). Because Task B obtained sl.ghtly more capacity than desired, its
task level is higher so that in future competitions it loses out. In the long

run, the actual machine usage approaches the desired machine usage.

All processors were kept busy each execution cycle (there were always
enough instructions for 't to do), the machine usage approximated the de-
sired machine usage, and every task obtained access to the processors

once in awhile. Thus, tuis seewrs like a good assignment procedure.

As time progresses, the task levels increase; to prevent overflow, a con-
stant 1s subtracted from all task levels whenever the highrest task lavel
overflows. The casicst constant to pick s the power of two 1epresented

by the highest bit in the task leve! field,

~381-

.

R

,

APPENDIX XV

SABLE XV-1 - TASK LEVELS AT SUCCESSIVE EXECUTION CYCLES

ASSUMING A GIVEN INITIAL CONDITION

Task A{A = 3) | Task B (A = 5) Task C (A = 15) | Task D (& = 15)
Level {Proce:sors |Level| Processors | Level| Processors | LLevel|{Processors
100 100 200 50 300 400
400 50 4590 300 100 400
550 450 50 1800 400 100
550 100 760 50 1800 1900
850 106 550 50 1300 1900
1150 100 1200 50 1800 1900
1450 100 1450 50 1800 1900
1750 50 1700 100 18G0 1900
1900 50 2200 1800 100 1900
2050 50 2200 3300 1900 100
2200 100 2200 52 3300 3400
2500 50 2450 100 3300 3400
2650 100 2950 50 3300 3400
2950 100 3200 50 3300 3400
3250 3450 3300 3400

The task level computer consists of a small sorting memory and a set of
serial adders. It sorts the task identifications arriving from the proces-
sors and whenever two werds for the same task are scorted toget'er, an
adder adds the two fields and erases one of the word”. Over several cy-
cle, the necessary additions 1o each task level word are made. The task
level words are periodicelly fed to the MPC. Note that the task level word
18 not updated instantaneously but wili usually lag behind. the effect of this
18 te introduce saome "overshoot’ an the process but thos will not have any

cifect over the long run

-i82-

T T ST o A T T

APPENDIX XV

MEMORY REQUEST SORTER

Because the memory is a merging-separating memory, the memory re-
gquests must be presented to it in ordered fashion. The memory request
sorter (MRS) gathers all memory r2quests from the processors and 1/0
units and orders them. The ordered set is presented to the memory dur-

ing Step 1 of its cycle.

Each write request is one word with the format shown in Figure XV-3,
When this is put in the memecry, it will act as a normal memory word.
Each read request consists of two words, an upper limit and a lower
limit. The lower limit format shown in Figure XV-3 is where Y is the
code for the particular type of request (see Item 3) and the threshold is
all zeros except for a threshold search operation. The upper limit for-
mat shown in Figure XV-3 is where the MPC information indicates where

the data retrieved by the - .quest should go in the MPC.

RWRITE REQUEST

MEMORY ACDRESS 0 DA TA 0100
(24} R} (32} (&)

READ REQUEST, LORER LIN:T

MEMORY ADDRESS o THRESHOLD Y
(24 [} 32 &)

READ REQUEST, UPPER LINIT

MEMORY ADORESS |O MPC iNFORMA Y 1ON | o000
(24 (1) [EF 1 ‘P

el

Figure XV-3 - Memory Request Formats

-3183.

APPENDIX XV

7. MULTIPROCESSOR CONTROL
a. g}eneral

The multiprocessor centrol (MPC) consists of a sorting memory with logic
between adjacent words to cause certain changes in the words. There are
three kinds of interfaces with the MPC: [/O devices, processors, and
mernory channels. The uppermost end of the MPC is the I/O region with
each I/0O device connected to one word in the region. Immediately below
the I/O region is the processor region with each processor connected to
three consecutive words in the region. The lowermost end of the MPC is
the memory region with each memory channel connected to three consecu-

tive MPC words.

The MPC cycle consists of a sort phase during which ali MPC words are
sorted, and a transfer phase during which the interfaces read and/or write
into their corresponding words and certain words are interpreted and modi-

fications made.

The following five kinds of words are in the MPC: @, 3, v, §, and £, with
the formats as shown in Figure XV -4, During the transfer phase, these

words are interpreted as follows,

a word: If the word above an ¢ word is an € word with the
same A field, then move the F field cf the @ word into the A
and B fields of the same word and copy the C and H fields of
the £ word into the C, F, and G tields. The € word is undis-
turbed while the @ word 1s changed to an € word with new A,
B, and H fields. [f the word above 1s not an £ word or does

not have the same A field, the ¢ word is undisturbed.

~ jword: Same a3 the g word except that the £ word 15 erased

{(C - 100 and ull other fields clecared to zeros).
X worg: If the 'wo aords above a vy word are £ words with the
sanie Afields, set the left-most bit of the y word andthe two

words to |, vtherwiae, leave all words alone.

-ind.

APPENDIX XV

T
A) F G
001
a 120) (8) (28) 120)
(3)
C
A F G
- 000
B (201 ® [(28) (200
3
A e H
Y #10 148
(20) (8 e)
S A 8 mcl H
(20) @)
e 148)
C
A
£ ‘ B 100 H
{20) ® | (48)

Figure XV-4 - Multiprocessor Control Word Formats

8 word: If the word above a $ word is an £ word with the
same A field, its left-most bit is set to 1 and the § word is
erased (C = 100 and all other fields cleared to zeros); other-

wise, set the left-most bit of the § word to 1.

€ wc.od: Not interpreted except in relation to adjacent @, 3,

y, or & words.

The set of words in the MPC is divided into seven regions. The size of
these regions varies with time and one or more of them may be empty at
a particular time. The left most three bits of cach wurd indicates the

region it is in. The regions are listed below with the three-bit codes.

111 - 1/0 region

110 - Procecsor region
101 - Result region
01l - 1/0 buffer - gion

-385-

&

APPENDIX XV

010 - Instruction region
00] - Pointer region

000 - Memory region

As described above, the MPC interfaces are connected to the I/O region,

processor region. and memory region. The size of the 1/C region is fixed.

The operation of the MPC can be described by showing the actions that oc-
cur for words retrieved ircm memory (words from memory may be words
for output or instructions or data), words from I/O devices, and words

from processors.

b. Output Words

An output device requests a block of consecutive words from memery by
putting a read request or read and erase request in the MRS, The upper
limit of the request contains the output device code. When the block ap-
pears on the memery interface to the MPC, an £ word is written for each
word, The upper and lower limits become erased words while every word
in between has the output device code preceded by the I/O buffer region
code (011) written in the A field. The 24-bit memory address and the 32-
bit data field of this word are put in the B and H fields. These MPC words

travel to the I/O buffer region in the next sort phase.

The /0 buffer region is ordered by I/O device number, memory address,
and data field.

c. Channel Wo rds

Every I/O channel (whether the I/O device s operating or not) inserts into
its corresponding MPC word in the IO region a fixed § word with the 1,0
~ buffer region code {011} aad the 1O device code in the A freld. This word

-4

travels to the [/0 buifer region and either sends back the least word in the

device buffer, if there i3 one, or sends back itself :f there 15n't one. In

‘his way, each output device reads its own buffer.

APPENDIX XV

I/0 units are started by putting specially flagged control words in their

buffers.
q. Instructiong_

The upper limit of an instruction-block read request contains the MPC
block assignment for the block, the program ID, and the MPC address

of the start instruction that caused it to be read in. When an instruction
block arrives over the memory - MPC interface, each word causes three
MPC words to be formed. Two are operand requests and one is the OP
code - program ID word (dummy words are formed in place of operand
requests for instructions that have less than two operands). The operand

request format is in Figure XV-5,

X is either a zero or a one depending on whether the operand should be

erased or not. The operand request is an & or-a 3 word so that when the
desired operand appears in the result region it is copied and the operand
request sent to the instruction region. The OP code-program ID word is
a y word so that when the two operand requests return to it, all three are

sent to the processor region.

When a new instruction block is read in, a pointer word containing the
MPC block address and address of the start instruction is put in the
puinter region. This is used by SPB and SPR operations to find operands.

107 |omgnano aooness! 00000000 | oox | 016 | INSTAUCTION ADORESS |
§] (m e 1N R (} 3] 130)

Figure XV-5 - Operand Request Format

-387.

-

APPENDIX XV

e. Data

Data requests are s.nt to the result region. The upper limit contains the
MPC address.

f. Processor Results

Results of instructions are sent to the result region addressed appropri-

ately.

g- Summary

This describes the MPC. Generally speaking, € words contain data while
a, 3, vy, and § words act as data requests. The I/O regior is fixed in
length by guaranteeing a fixed number of words with the I/O region code

(it a § word finds notiing to send to the I/O region, it sends itself).

An MPC of 8192 words requires $1 steps (1/2 X 13 X 14 = 91) in its sort
phase and | step in its transfer phase. At 150 nsec per step, the MPC
cycle is 13.8 usec. .. good assumption to time out example problems then

is 13. 8 usec per MPC cycle. Figure XV-6 shows the timing charts.

CONCLUSIONS

I'he various parts of Machine Il have been described. The main differ-
ence between it and Machine 1 is the multiprocecsor control (MPC), which
allows automatic dynamic processor assignments, the ability to code
parallel programs without specifically assigning new processors, and

the abili'v to crosstalk between parallel programs. This enhances the

etficiency of the machine 'n many programs,

- 384.

ARITHMETIC AND LOGIC (8 CV7 ES MINIMUM) THS (4 CYCLES MINI:

| S
- >0
|lA|l 'N ”A“ IN \\\._ ”A' ‘N 70"'
RESULT INSTRUCTION >~ A . 4 RESULT INSTI
. ;4 T L] Al -
REGI-ON REG!ON ”-r’ “A ', U@ AND RESULT (N RESULT IN REGION REG!
t—-———*/ >0 \NsTRUCT!ION PROCESSOR RESULT }
BN TR IN PROCESSOR REGION REGION ng N g
RESULT INSTRUCT!ION REGION

RESULT INSTH

REGION REGION REGION REG!

CONVERSIONS AND STH (4 CYCLES) STO (4 CYCLE ~ MINY

} 4
— $ +— } { p—
- TNTY RN "B AND RESULT IN RESULT N AT AN oA
RESULT INSTRUC- INSTRUCTION PROCESSOR RESULT RESU_T NST
REG!OM TiON IN PROCESSOR REGION REGION secion REG
REGION REG!ON
SPE,SPR, BRG (T CYCLES SUNIMUN) g U8
) _— RESULT INST
g L EY 4 : : REG!ON REG
}'——__*-“-"r— LB _i---- ’ T o % 1
INSTRUCTICN POINTER PQOINTER TO CRTCING ey '8 AND RESULT IN RESULT IN
READ-IN N INFTRUCTION RESULT INyTRuUC- 'NSTRUCTION PROCESSOR RESULT START {1 CY(LES)
POINTER REG!CON REGION TION IN PROCESSCR KREGION REGION
REGION REG!ON REGION i“_"'"
cgtin A
ROM (3 YOLES, RESULT INS®
PEGION o
. d- 3. |
i v i ¥ R REC
INSTRUC= INSTRUC- DATA IN AT A N
TION TiOMN N MEMORY RELULT
READ-IM PROCFESSOR REGION REGION
REG:ON

EONDITION 1 ST AR
KIM & RIN 4 Y] S

| ——
) AT N AT
— 4 4 + — SESULT INGTH
RN AN 8 AND DATA N ODATA 1N ANG ON REGH

RESULT INSYRUC - (RSTROC MEMO 7 RESULT
REGON T 0n TION N REGIONR REGION ;.....__.m._
RELION PROCESSL K NOTE N @t

RECION

RESULT b e ®

TiME % EXPREWED IN MPC CYCLES KEGION HEG

AJCUT 138 usEC

DOSTED PATHS AME "wa1T8" FOR VARIOUS
CONDIT NG AND MAY BE 2EA0 LENQTH

TR AR

-+ APPENDIXXV _

1 - :
THS (4 CYCLES NINIMUN) SUPER (2 CYCLES)
<20 ' + ~
A’ IN AN ‘\\ INSTRUC~ - INSTRUC- SUPERVISORY
RESULT INoTRUCTION ‘u + . i TIiON " TION IN ROUTINE
L L
REGION REGION /,' “AY, YE AND DATA IN DATA IN REA_D-lN PROCESSOR N MEMORY
I INSTRUCTION MEMORY RESULT REGION REGION,
3 “g N TR N © IN PROCESSOR REGION REGION POINTER IN
’ RESULT INGTRUCTION REGION ::'GNI;ER
REGION REGION N
STO (4 CYCLES MINIMUM TO BE REREAD)
i o0
f AT N “A'" IN \\2 > o
¥ " RESULT INSTRUCTION ‘_{ % e - SO
REGION REGION ’,/ S veat vt AND BATA 1N DATAIN DATA IN
| .7 20 |uSTRUCTION MEMORY MEMORY RESULT
gt N e IN IN PROCESSOR . REGION REGION
3 : g
: N REGION
: RESULT LN:;F::ICT‘O Glo WHEN ITEM IS REREAD
: —] REGION - ! INTO THE MPC -
; RECLLT IN - RESULT IN , : :
ON PROTESSOR RESULT START (3 CYCLES)
SOR REG ON REGION
’ [1 [l i
] ¥ T ™1)
g N "B IN g AND INSTRUCTION
RESULT INSTRUC- INSTRUC - BLOCK READ-IN EPB, EPR {3 CYCLES)
REGION TIiON TION IN TO MEMORY - - "~ = b ' 3 i
e - { 1 M L]
REGION PROCESSOR REGION AND INSTRUC~ INSTRUC- ERASE ERASE
REG:ON POINTER 14 TiON TIONIN ~ REQUESTSIN REQUESTS
PROCESSOR ‘-, READ-IN _ PROGESSOR . PROCESSOR TG RESULT
REGION REGION " REGION REGION :
CONDITIONAL STARTS {3 CYCLES MINIMUM)
S >0
IIA'I IN "A" iN \:
RESULT INSTRUCTION™. | . , CONST (1 CYCLE)
La 3 L B
REGION REGION ”,/ ”A", "5”. AND INSTRUCTION BLOCK - .
27 20 INSTRUCTION READ-IN TO MEMORY I i
i = . CONSTANT
] - IN PROCESSOR REGIQN AND POINTER ,:::g?sﬂou IN KESULT
(1] L] 1] * -
87N TBTIN REGION IN POINTER REGION
‘ RESULT INSTRUCTION {1 CONDITION REGION
RESSED It MPC C
YCLES REGION REGION SATISFIED)

} HSEC).

THS ARE 'WAITS" FOR VARIOUS
} AND MAY BE ZERO LENGTH,

_,..; e S AT PR RS

A E I

|

Figure XV-6 - Timing Charts

-349.

s

APPENDIX XVI - PARALLEL NONNUMERIC PROCESSING

INTRODUCTION

Nonnumeric processing is discussed in general along with the characteris-
tics that are present ir present-day machines and those characteristics

that are desirable in a parallel nonnumeric processor. Ways of imple-
rhenting these ¢haracteristics by means of sorting memories are discussed.
The detailed design of a parallel nonnumeric processor awaits further study.

NONNUMERIC PROCESSING

The words "numeric" and "nonnumeric" when applied to data processing
problems are misnomers. A look at typical numgriC"and nonnumeric prob-
lems reveals the distinguishing characteristic - the addressing of data. In
a typical n,t_nhe'ricf problem, most items of data are addressed by their
unique label'; (a.ddrécses); this can be called "explicit addressing." In a
typical nonnumeric problem, most items of data are addressed by their
properties; this can be called "implicit addressing."” This can be seen

when a typical numeric programming language, such as FORTRAN, in
- which each item is referred to by a unique label, is compared with a typi-

cal nonnumeric programming language, such as for list processing, in
which a typical operation might be the searching of a list structure for a
get of items meeting a given pattern.

CLASSES OF PROPERTIES

In general, the properties by wkich data are implicitly addrossed fall into
three classes:

1. Ary property dependent on an item of data per se; for ex-
ample, tl.e property of being greater than or less than a
threshold or the property of having certain of its bits

-391-

e R

APPENDIX XV1

matching a pattera. This class usually is called coatent- -
~ addressing. ' :

Z. Any maximum or minimum property such as the property
of being the largest or smallest item in a set, This is re-

ferred to here as limit-addressing.

3. Any property dependent on "neighborhoods." When these oc-
cur in a nonnumeric problem, there is a structure (topology)
imposed on a set of data such as lists, trees, matrices, list
_structures, etc. A typical property b'" which itemrs may be
addressed raight be the satisfying of a subpattern. This is
referred to here as structure-addressing.

Properties from more than one of these classes may be used in a single
search. For instance, one of the search patterns mentioned in Appendix X

is a string of five items (structure-addressing), the first, third, and tifth

»
%

of which are operators and the second and fourth of which are variabli:s
(content-addressing) and in which the precedencce of the third item is
greater than that of the first item and nci !nss than that of the {ifth item
(limit-addressing). These properties are separated into these classes
hecause the implementations of searches for properties usually difier.

4, SOME PRESENT-DAY NONNUMERIC PROCESSORS

Most convantional computers are capable only of explicit addressing of
data. A few (the CDC-1604, for example) can perform equality search or
threshold search operations by which a contiguous table in memory can be
content-addressed; these operations search sequentially and thus ar. prac-
tical only for small tables. To make the solution of some nonnumeric prob-

— lems more ameanable on a coaventional computer, a number of lunguages

1 are available of which LISP, IPL-V, and SNOBOL are examples. In essence, .
thess languages arrange the atorage of data mors efficiantly so that struc-
ture-addressing is easier; link fields in items represent the neighborhoods. .

The amount of time spent in housekeeping in these programs lowers their
V‘ potential to arnall nonnumeric problems,

-392-

R T hrmm i T 6 1 RO ST 70 1 1L s R S RN, SO b an . Sl

APPENDIX XVI

Content-addressing memories (CAMs) can perform content-addressing
very well since all of raemory is interrogated at the same time, By add-
ing a fast facility to indicate the presence or nonpresence of responses,
limit-addressing (maximum and minimum searches) also is performed
very well, Structure addressing can be added with multiple comparands
{see Item 5, below), Single-comparand CAM's might require long times
to do certain structure-addressing problems.

If the problems to be solved are limited to those with a certain topology,
the respon-e store of a CAM could be interconnected in that topology and
a machine obtained that would solve problems in that class very well, Two
machines with this organization are the Illiac III at the University of Illi-
nois” ® and the SOLOMON.?
array. On problems that fit the square array, these machines do very

Both of these have the topology of a square

well while on other problems they lose much of their speed. There are
many different topologies present in nonnumeric problems; for example,
lists, list structures, trees, arrays, and graphs. In many prcblems, the
topology changes as computation proceeds, hence a machine with a fixed
topology will be limited in purpose, The topolegy of any practical non-
numeric problem can be represented by & graph with waighted directed
links; nodes represent items, and links represent the connections or re-
lations between neighboring items (the link weight ahows the kind of rela-
tion). As is shown under Item $ balow, content-addressing can be changsd
to structure-addressing so an organization based on grapha will have great
utility,

S. CONTENT-ADDRESSING BY STRUCTUPR.£-ADDRESSING

Given a processor capable of repreasenting any topology, one can impls-
ment content-addressing. The technique is to separate each item into ite
separate fields and connect the fields by weighted links to show where they

.Suptrior numbers in the text refer to items ir the List of References undsr
Item 11, Page 405,

-393-

R LT i i ¥ R
R > 7’3' o }.4'» A
BAAR () tap7 4 il

APPENDIX XVI

occur, and then coalesce any equal-valued items. Each item contains only
one field and its value is unique so its value can be used as a label or ad-
dress by which it can be explicitly addressed. The example that follows
exhibits this technique. Suppose there are the following eight 3-field items

to be content-addressed:

T 0 1m0 0w >
I N L
NOWw N = W

L S

The three fields of each item are separated and connected by a link of
Weight 2 betweern the first and second fields and a link of Weight 3 between
the first and third fields. Then all equal.valued items are coalesced. The
resulting graph is:

Ny
} A content-address search for those items whose second and third fieids are
2 and 1, respectively, is transiormed to a pa search lor
gt"‘" _
- o -394.

s A+
Ll "R —

APPENDIX XVI

Ot O

Any content-address search can he similarly transformed,

6. STRUCTURE-ADDRESSING BY CONTENT-ADDRESSING

Given a multiplea-comparand content-addressable memory, one can imple-
ment structure-addressing on it; one stores a word for each link of the
graph containing the initial node label, the link weight, and the terminal
node label,

As an example, the graph previously shown could be stored in a CAM as

follows:

Initial Link Terminal
node weight node

>
™~

O e W Y e = fJ N =

T X 00" YT mUoOU0O0O0O s >
[V VRN PEEEE YRR VTR S TR VI

— R e e e e

-395.

APPENDIX XVI

]
kS
?
§
m
L

£ 72

<

PR

The pattern search
@ 2 O 3 c

could be implemented as follows:

1. Find all words with 2, 2 in their second and third
fields (three responses: B, 2, 2,; E, 2, 2; H, 2, 2).

2. Form a comparand for each response whose first
field is the first field of the response and whose
second and third fields are 3 and | respectively
(three comparands: B, 3, 1, E, 3, I; H, 3, 1),

3. Find all words that agree with one of these compa-
rands (two responses: B, 3, ; H, 3, 1),

B and H satisfy the pattern search (the first fields of the responses to
Step 3).

This example shows the use of multipie comparands. In general, they

will be required in many structure searches, being formed from the re-
sponses of one step of the search {or use in & later step. If the data struc-
ture is large, there may be many comparands in some step of a search; a
single-comparand CAM can only treat these one at a time and may become
unduly slow.

A machine organization using & single.comparand CAM for structure ad.
dressing is the Asscciction<Storing Processor. 3 Since only ons comparand
is permittec at & time. the search ajgoritam involves a "backtrack" pro-
cedure; that ts, after any atep it treate one of the responses in the next
step, carrying it to completion. ard then ireats the others in later steps.
The time spent in a given search depends strongly on the complexity oi

the data structure being searched, some siructures may generate numer-
ous responses and hence. numerous backtrackings.

«39%.

it

APPENDIX XVI

From these thoughts, the desirability of a multiple.comparand content-
addressed memory car be seen,

7. A SORTING MEMORY AS A MULTICOMPARAND CAM

a. Geueral

One way to build a multicomparand CAM is to use multipie response
stores, one for each comparand, The response store in a CAM is a
major cost item and thus this solution is uneconomical. Another way

is to use a sorting memory (Append. : VI), This has the advantage
that the cost increment is small as comparands are added. One limi-

tation is that only searches on the left parts of words can be performed;
proper-organization of data removes the effect of this limitation.

jor

Main Section

A sorting memory used for multiple-.comparand content-addressing
has 11 different words in its main section, Their formats are shownin
Figure XVI-1. The leftmost bits of these words are 0. The high end of
the sorting memory is the readout section and contains words with
leftmost bits equal to 1. The readout section is discussed in Item ¢

below,

Empty words contain all zeros except for two bits as shown in Figure
XVI-1. Their magnitude is less than that of any other word in memory
and thus they collect at the iow end of memory. The low end is used
for irput so the empty words are overwritten with new data or oper-
ations through the input lines,

Each link of the data structure is represented by two link words - a
forward word and a backward word. The node labels are interchanged
and the bit between the A and B fields is changed irom O to ! in the
backward word. Because of the sorting action. the forward words of

all links leaving a given node are collected and ordered b; their weights.
Similariy, the backward words of all links entering the node are col-
lected in a st adjacent to the forward words of links leaving the node,

-397.

4
3

|

APPENDIX XV1

EMPTY WORD o[n ’ - 6{ojo olilo ¢

[FORWARD WORD

O] IMITIAL NODE LABEL |0 LINK WEIGHT t[TEAMINAL NODE LABEL]!?
LINK WORDS 4 :
BACKWARD WORD
O TERMINAL NODE LA.ILF " LINK WEIGKT 1] INITIAL NODE LLABEL |1

[1: PORWARD WORD DESTAUCTION
[o] miviaL nooe Laser To| Link waigHT {1|remminaL oot LaseL]o]

2: RACKWARD WORD DESTRUCTION
jofremminaL nooe LaseL]i | Linkweianr [t] iwiriac nooe Lasee ol

3 READ ALL LINKS ON A NODE

fo] ooz LaeeL fefo : » ofojs|1] cowTmoL |1]

4: READ ALL LINKS ON-A NODE AND DESTROY

T
ol NODE LABEL olo ~Talr [+ NT
OPERATION _ [l H CoNTROL °J
WORDS
$: READ CERTAIN FORWARD WORDS
ol INITIAL NODE LABEL |0 LINK WEIGWT olelt CONTROL v}

6: READ CER. »:N FORWARD WORDS AND DESTROY
Iol 'MiTiaL NODE LABEL fof Link waiont folo[t] cowvme. o

7: READ CEATAIN BACKWARD WORDS
[ajremmnaL nook LameLfs] Lk wmiawr fofolt conYROL 1

8 AZAD CRATAIN DACKWARD WORDS AND DESTRAOY

[o]TammnaL noOE Langi | Line waignt [ofe] O
) . v . ol h 2 N v)
180 t B2/ 1% 3% 2118
~ — -

Figure XVI.]l . ‘Word Forwuir it -~ Multicomparand Content-Addressed
Sorting Memory ' '

389

APPENDIX XV1

Operations 1 and 2 (Figure XVI-1) destroy a word with a given liak
weight an2 node labels. They are characterized by a 1 between the -

B and C fields and a 0 in the rightmost position. The bit between the

A and B fields indicates which operation is to be done, forward word

destruction or backward word destruction. In either case, the sort- -

ing action zends the operation word to a location just below the word
to be destroyed. Circuitry in the memory detects the existence of
the operation word and changes it and its corresponding link word

to empty words. If no link word corresponds, the operation word
alone is destroyed. |

Operations 3 and 4 read all the links on a given ncde. A 0 between
the B and C fieids and a 11 in the two leftmost C-field positions
characterize these operations. The sorting action sends these oper-
ation words to a location just below the links of the given nod~, Cir.

cuitry in the memory detects the presence ol one of these operation
words and causes the following action:

i. The C-field contents of the operation word re-

places the A field of all corresponding link
words.

b

3. The A- and C-field contents of the nperation
word are interchanged,

3. The lettmost bits of the Link vords and oper.
ation word ore chanped from ¢ to L.

This activn causes the operation word and link worda to travel to the
readc at section during the next sort cyele, The liuk words are sent
back to the main section aiter readout if and uniy i1 the rightme
operastion wurd bit 18] (Operation § rather then Operation 4).
Operctions & 6, 7. and 8 resd all finks witi- 3 given weight and di-
rectian incident aa & given node. A 0 between the B and C lields

and a 01 in the two leftrmost C-held positions ¢... #arterize thesc
oporation wards. The rorting action s+nde the. - aperation. words

-399.

$e . . U
X 3 b T

s cand R B

£

< AR R

. APPENDIX XVI

12

(R

to a location :qut‘ below the lizks to be read. Circuitry

in nieniéi'y detects their prerence and causes exactly the same

action as thé.t for Operations 3 »nd 4; only the link words with the de-
sired link weight are treated.

Readout Sectioi

_ As indicated in b above, Operations 3 tarough 8 cause the leftmost

bits of certain words to be changed from 0 to 1; during the succeeding

sort cycle, these words arrive at the high end of memory (the read-
cut section). At any time, each o/ the operation words has a unique
control so that no intermingling of responses between concurrent
operations can occur (the control is put in the A field as discussed

in P_above).

Readout lines connected to the high end of memory read the contents
of the readout section after which circuitry in memory causes the

following action:

1. Any link word associated with an operatiocn word
whose rightmost bit is 0 is overwritten with an

empty word (this destroys this link word),

2, The A-field of any link word associated with an
operation word whose rightmost bit is | is re-
placed by the C field of the operation word (this
wasg its original A field) and the leftmost bit of
this link word is changed back to 0 (ti::s puts it

back in its original state),

3. Any operation word is overwritter. with an empty

word.

-n the succeeding sort cycle all undestioyed link wordrs : turn to their

former positions in the main section of memory.

Conflicts between Operation Words

There is a possibility that more than one vperation word “v.nts to

-400-

AN

APPENDIX XVI

affect the sarme link words. These conflicts are detected in the main

section and resolved with the following rules:

1. Operations 1 and 2 take precedence over the other
operations. Any other operation can still read

any link not being destroyed by an Operation 1

RN Y.

or 2. .

2. Operations 5, 6, 7, and 8 take precedence over
Cmerations 3 and 4. Otherwise, conflicts are
recolved in favor of the operation word with
higheét control field. Any operation word losing
out to another by this rule is "delayed" as dis-

cussed below,

An operation word iosing a conflict by Rule 2 is delayed by changing
the 1 in its second leftmost C.field position to a 0. The word remains
ir: this state during the succeeding sort cycie. At the end of this cycle,
the bit is changed back to a 1 but no other action occurs until the end
of the following sort cycle at which time thc operation is tried again
(at this time any undestroyed links that were sent to the readout sec-
tion by the operation winning the conflict have been returned to their

original state).

Operations 3 through 8 cause link words to be absent from the main
section for two sort cycles. A simple rule can prevant the possibility
that an operation word arrives in the main section while the links it
wants are in the readout section. The rule is to input operation words
with odd A fields only during alternate cycles and operation words

with even A fields only during the intervening cycles.

The restriction mentioned in the foregoing paragraph can be removed
by the addition of "place marker" words to those of Figure XVI-1. Such e

words would remain in the main sectinn in place of those links sent

to the readout section,

N
i
i
;
L

L

B e L e P

e

APPENDIX XVI

A PARALLEL NONNUMERIC PROCESSOR

A parallel nonnumaric 'processor could be construéted using the multiple-
comparand c_ont'ent-addressed'so_rting memory described in Item 7, Fig-
ure XVI-2 shows a block diagram of such a processor.

In genéral. the processihg unit _sénds operation words and new link words
to the memory ami receives responses in return. The control fields origi-
nally entered in the operation words wind up in the r‘eSponses so that no
ambiguity occurs even though many different operation words may be pres-
ent, The control fields are used in the processing unit to send the re-
sponses to the correct locations. Inpait and output channels communicate
with the processing unit. These can be handled in a manner similar to
that described in Appendix XV,

Further development of the processing unit is dependert on development
of general-purpose structure-search algorithms. The basic form for an
algorithm that treats both searches with loops and "loop-free" searches .
is discussed below. Arithmetic and other operations need also be included

to obtain a useful machine.

\’j K v
RESPONSES 7 CHANNELS

MULTIPLE COMPARAND
CONTENT ADDRESSED SORTING
MEMORY
SORTING MEMORY
P
[— > ouUTPUT
ey
OPERATION WORDS CHANNELS
MEMORY AND NEW DATA PROCESSING UMIT

Figure XVI-2 - A Parallel Nonnhumeric Processor

-402-

AR

APPENDIX XVI

ALGORITHM FOR PARALLEL-STRUCTURE SEARCHES

This algorithm will search any data structure for a subpattern that meets

the following conditions:

1. All link weights in the search pattern are constant

(have known weights), and

2. At least one node in the search pattern is constant
(has a known label). -

The algorithm works in "parallel, " treating all possibie search candidates
simultaneously, The time in most cases is proportional to the number of

links in the search pattern unless storage limits are reached.

The algorithm produces a set of n-tuples where n is the number of vari-
ables in the search pattern. Depending on the implementation of the al-
gorithm, the n-tuples might be stored as ordered sets of words in the
processing unit 6r the n-tuples might be represented in memory; for ex-
ample, a new node for each n-tuple connected to a fixed node and to all of

its members by links with certain weights.

We assume the variable nodes of the search pattern are labelled by Xl'
X,o + ., X_. The ithterm (for 1 £ i ¥ n) of each final n-tuple will

contain the node label of 'Xi in the subpattern corresponding to the n-tuple,

With no loss of generality, it can be assumed that for any pair of variables

in the search pattern there exists at least one path between them incident
only on variable nodes. If this condition is not met, then the search pat-
tern can be split along some of its constants inlo two or more disconnected
pieces; each of the pieces mests the condition and can be treated inde-
pendently of the other pieces., Furthermore, any link between constants

is redundant and can be removed.

The only housekeeping required is a method of marking treated links in

the search pattern to distinguish them from untreated links,

. The algoritam is as follows:

Ky ,—Ngv&ww-wmmwvx&w el : it P

R PN

TR A A T R
SR AT e

B Sl e

~ APPENDIX XVI

‘Step 1. Pick any link in the search pattern incident on a
constant. The other node of the link is a variable, say
kxi.‘ Depending on link direction, send an Operation 5 or 7

word to memory (see Figure XVI-1)using the constant and
link weight in fields A and B, respectively. The re-
cponses are candidates for Xi. Form an n-tuple for

each response with the response node label as its ith
rie2mber. Mark the search pattern link as being treated.
o to Step 2. '

Step 2. Is there any untreated link in the search pattern
Petween a constant and a variable incident on a treaied
link? If so, go to Step 3; otherwise, go to Step 4.

:_
-
&
i

Step 3. Let the untreated link of Step 2 have link weight
, constant node C, and variable node Xi' Depending on

link direction send an Operation 5 or 7 word to memory

with C and W in fields A and B, respectively. Compare

the responses to the ith members of all n-tuples and de-
stroy any n-tuple whose ith member does not correspond
to any response. Mark the link as being treated. Go to

Step 2.

Step 4. Is there any untreated link in the search pattern
between two variable nodes, each of which is incident on
some treated link? If so, go to Step 5; otherwise, go to

Step 6.
_ Step 5. Let the untreated link have weight W, initial node
U Xy and terminal node Xj«. For ¢ach n-tuple, send an

Oreration 5 word to memory with its ith member in the
A field and W in its B field and discard the n-tuple if its
jth member does not agree with any of the responses,
Mark the link as being treated. Go to Step 4.

Step 6. Are all links in the search pattern treated? If
80, the algorithm is complete; if not, pick an untreated
link one of whose nodes is incident on a treated link and
go to Step 7.

Step 7. Let the untreated link have weight W, Let the
node incident on a treated link be Xi and let the other

node be Xj. Depending on link direction, send an Oper-

\i

1 field of the operation word is the ith member of the n- .
! tuple and the B field is W. If the operation word for the

= n-tuple has m responses, replicate the n-tuple m times
’1 and put one response in the jth member of each copy,

¥

ation 5 or 7 word to memory for each n-tuple, The A

Mark the link as being treated. Go to Step 2.

-404-

APPENDIX XV1

This algorithm can be halted after Steps 1, 3, 5, or 7 if no n-tuples are
present. This condition means that no subpattern of the data structure
matches the search pattern,

10. CONCLUSIONS {

This appendix has discussed nonnumeric processing in general and charac-
teristics that are present in current machines and also those characteris-
tics desirable in a parallel nonnumeric processor. It was shown that a i
multicomparand TAM exhibits these desirable characteristics. It was
further shown that a sorting memory can serve as an implementation of |
a multicomparand CAM. A general form for a parallel nonnumeric proc-

essor was described. A basic search aigorithm was presented for parallel

structure searches,

Time limitations prevented development of the detailed processor design.
A general search algorithm should also be developed. However, study to
date indicates that a machine patterned after the organization in this re-

pert would be capable of solving large nonnumeric problems significantly

faster than other existing schemes.

11. LIST OF REFERENCES
1. MeCormick, B. H.: The Illinois Pattern-Recognition Computer
gmiac III). Urbana, {17 Unlversity of Mlincls, Digital Computer
aboratory Report No. 148, 1963,

2. Slotnick, D, L., et al.: *SOLOMON." Proceedings of The Fall
Joint Computer Conference, 1962.

3. RADC-TR-65-32: Association-Storing Processor. Rome Air De-
velopment Center, Grilliss Alir Force Base, N, Y,

-405-

UNCLASSIFIED
Becurity Classifigation

DOCUMENT CONTROL PATA - R&D

(Rpcurity clecaitigation of iils, hedy of gbatrmci and indezing ennsiation mus! be entered when the sverall teport lo classified)

Y. GRIGINATING ACTIVITY (Corperalp suthor) 3e. REPORT JECURITY € LAGSIPICATION
Unclassified
Goodyear Aerospace Corp 16 enour

T——

3. RERORT TITLE

Advanced Computer Organizatior Study
Nolumes I and IIX

[} D!.SCHIP"W!. NQTES (Type of peparl and [nclvaive dates)
Final Report August 196h - November 1965

5. AUTHOR(S) (Last neme, tirat ngpe, injtigl)

Rohrbacher, Donald L.

§. AEPORY DATE T ?‘ JOTAL NO, OF SAGKS 75. NO. OF REPS
April 1966 58 L
88 CONTRACT DN GRANT NA. 04 ORIGINATOR'D REPORY NUMBERN(S)
AF30(602)=3550
b PROJEECT iQ. GER-12314
159l
c 90. QTHER REPORT NO(S) (Any ether numbers that may be sessigned
Task L5506 Biv'mperd s>
d. RADC~BPR=b6=7

10. AVAILARILITY/LIMITATION NQTICKS
Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES | 12. sPONSORING MILITARY ACTIVITY

Rome Air Development Center
GAFB, N.Y, 13uk0.
13. apsTRACT Advanced general-purpose corputer crganizations capable of parallel data
processing were studied. To achleve marim:u system performance from highly parallel
computer organizations, new solution models and programming techniques must be develbp-
d., Hence, the following three areas were investigated simultaneouslys

1. Applications - Study of problems and their inherent degree of parallelism, and
development of theoretical solution models foar use on a parallel processor,
2. Programming - The programming of paralsl solution models on the postulated
cormputer organizations,

3. Machine Organization = Development of machine implsmentations capabls of par-
llel data processing,
This study resulted in the design of two computer crganizations (designated Machine
and Machine II) capable of parallel data processing snd fast sorting and table seajch-
ng in memory. These machine organizations were possible because of the development
f a special memoary that permits many processing and input-ocutput units to access
emory sirultaneocusly without conflict,
The applications effort was focused on the development of solution models which
lolted the maximum amount of parallelism resident within a problem., Tvo majon
roblems were investigated: a dynamic programuing problem, and parallel compilation.
Detailed programs were written for the dynamic programning problem on Machine I an
parallel compilation algcrithm on Machine II, These same problems also were m'ogr:}md

n the IBM 7090 to provide a standard of comparison. In both cases, the parallel pr
essing capability of the machines afforded significant increases in speesd of progr
ecution.

DD .for%, 1473 UNCLASSIFTED

Security Claasification

o amr—

UNCLASSIFIED

Security Classification

18 T LINK A LINK B LINK C
KEY WORODS !ROLE wY ROLE wY noLE wr
Computer
Programming
Numerical Analysis
INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter ti » nsme and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) lssuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over
afl security classification of the report. Indicate whether
‘*Restricted Data’" is included. Marking 18 to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automastic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industris! Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Groun 3 and Group 4 ‘as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters, Titles in all cagses should be unclassified.
If 2 meaningful title cannot be selected without classifice-
tion, show title classification in all capitals in parenthesis
immediately following the title,

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final,
Give the inclusive dates when a specific reporting period is
covered.

S. AUTHOR(S): Enter the name(s) of author(s) us shown on
or in the report. Enter test name, first name, middie initlal.
If wilitary, show rank e¢nd branch of service., The name of
the principal wther is an absolute minimum requirement.

6. REPORT DATZI: Enter the date of the report as day,
month, vear; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
shoulg fellow normal pagination procedures, i.e., enter the
number of pages containing information

7b. NUMHER OF REFERENCES: Enter the total number of
references cited in the report.

Ba. CONTRACT OR GRANT NUMBER: If sppropriate, enter
the applicable number of the contract or grant under which
the report was written

Bb, 8¢, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Entcr the offi-
ciu} repart number by which the document will be identified
and controlled by the originating activity, This number must
be unique to thiz repott.

9h. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILADILITY/LIMITATION NOTICES: Enter any lim-

itations on further dissemination of the report, other than those|

imposed by security classification, using standard statements
such as:

(1), '"*Qualified requeatsrs may obtain copies of this
report from DDC.”’

(2) “Forelgn announcement and dissemination of this
report by DDC is not authorized.””

(3) *"'U. 8. Government sgencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

”

(4) *'U. S. military agencies may obtain copies of this
report directly from DDC. Other quulified users
shall request through

(1]

(5) *'All distribution of this report is controlled. Qual-

ified DDC ysers shall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate thia fact and enter the price, if known

11, SUPPLEMENTARY NOTES: Use for additional explans-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or 1aboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter sn abstract glving s brief and factual
summary of the document indicative of the report, even though

it may also sppear elsewhere in the body of the technical re-
port. If additional space is required, a continvation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS5). (). (C), or (U).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words ate technically meaningfu! terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected 50 that no security classification is required. ldenti-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con.
text. The assignment of links, rules, and weights is optional.

Security Clausification

